RAS Chemistry & Material ScienceЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

ELECTRICAL CONDUCTIVITY OF THE POLYVINYL ALCOHOL – SODIUM RHODANIDE SYSTEM

PII
S30346185S0424857025050036-1
DOI
10.7868/S3034618525050036
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 5
Pages
260-270
Abstract
In this work, sodium-ionic polymer electrolytes based on polyvinyl alcohol(PVA) and sodium rhodanide (NaSCN) have been investigated as promising materials for energy storage devices. The main attention is paid to the study of the influence of NaSCN concentration on the ionic conductivity, phase transitions and structural changes of the system in the temperature range 293–373 K. The results of differential thermal analysis, spectroscopy and electrochemical impedance measurements are presented, which showed a significant increase in specific ionic conductivity at a concentration of 20 wt% NaSCN. An improvement in ionic transport is observed due to the breaking of hydrogen bonds in the polymer matrix and an increase in the amorphous phase of the polymer. Quantum chemical calculations demonstrated the influence of solvation and hydration on the properties of ions in the system, indicating a favourable interaction of sodium cations with OH-groups of PVA.
Keywords
ДТА импеданс поливиниловый спирт роданид натрия ИК-фурье-спектры электропроводность NaSCN метод r2SCAN-3c сольватные структуры конформационный поиск
Date of publication
15.05.2025
Year of publication
2025
Number of purchasers
0
Views
64

References

  1. 1. Kudryashova, Y.O. Gavrilin, I.M., Kulova, T.L., Novikova, S.A., and Skundin, A.M., NaFeMnPO–Ge electrochemical system for sodium-ion batteries, Mendeleev Communications, 2023, vol. 33, no. 3, p. 318. https://doi.org/10.1016/j.mencom.2023.04.006
  2. 2. Dennis, J.O., Shukur, M.F., Aldaghri, O.A., Ibnaouf, K.H., Adam, A.A., Usman, F., Hassan, Y.M., Alsadig, A., Danbature, W.L., and Abdulkadir, B.A., A Review of Current Trends on Polyvinyl Alcohol (PVA)-Based Solid Polymer Electrolytes, Molecules, 2023, vol. 28(4), p. 1781. https://doi.org/10.3390/molecules28041781
  3. 3. Gaaz, T., Sulong, A., Akhtar, M., Kadhum, A., Mohamad, A., and Al-Amiery, A., Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites, Molecules, 2015, vol. 20, no. 12, p. 22833. https://doi.org/10.3390/molecules201219884
  4. 4. Tarascon, J.M., Naion versus Li-ion Batteries: Complementarity Rather than Competitiveness, Joule, 2020, vol. 4, no. 8, p. 1616. https://doi.org/10.1016/j.joule.2020.06.003
  5. 5. Maurya, D.K., Dhanusuraman, R., Guo, Z., and Angaiah, S., Composite polymer electrolytes: progress, challenges, and future outlook for sodiumion batteries, Adv. Compos. Hybrid Mater., 2022, vol. 5, no. 4, p. 2651. https://doi.org/10.1007/s42114-021-00412-z
  6. 6. Azemtsop, M.T., Mehra, M., Kumar, Y., and Gupta, M., Physical characterization of ionic liquid-modified polyvinyl alcohol and sodium thiocyanate polymer electrolytes for electrochemical doublelayer capacitor application, J. Shanghai Jiaotong Univ.(Sci.), 2021, vol. 28, no. 2, p. 161. https://doi.org/10.1007/s12204-021-2397-y
  7. 7. Sapalidis, A.A., Porous polyvinyl alcohol membranes: preparation methods and applications, Symmetry, 2020, vol. 12, no. 6, p. 960. https://doi.org/10.3390/sym12060960
  8. 8. Liu, B., Zhang, J., and Guo, H., Research progress of polyvinyl alcohol water-resistant film materials, Membranes, 2022, vol. 12, no. 3, p.347. https://doi.org/10.3390/membranes12030347
  9. 9. Hao, J., Wu, Y., Ran, J., Wu, B., and Xu, T., A simple and green preparation of PVA-based cation exchange hybrid membranes for alkali recovery, J. Membr. Sci., 2013, vol. 433, p. 10. https://doi.org/10.1016/j.memsci.2013.01.014
  10. 10. Dmitrenko, M., Penkova, A., Kuzminova, A., Missyul, A., Ermakov, S., and Roizard, D., Development and Characterization of New Pervaporation PVA Membranes for the Dehydration Using Bulk and Surface Modifications, Polymers, 2018, vol. 10, no. 6, p. 571. https://doi.org/10.3390/polym10060571
  11. 11. Wales, D.J. and Doye, J.P.K., Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms, J. Phys. Chem. A, 1997, vol. 101, no. 28, p. 5111. https://pubs.acs.org/doi/10.1021/jp970984n
  12. 12. Neese, F., The ORCA program system, WIREs Comput. Mol. Sci., 2011, vol. 2, no. 1, p. 73. https://doi.org/10.1002/wcms.81
  13. 13. Grimme, S., Hansen, A., Ehlert, S., and Mewes, J.M., r2SCAN-3c: A “Swiss army knife” composite electronic-structure method, J. Chem. Phys., 2021, vol. 154, no. 6, p. 40021. https://doi.org/10.1063/5.0040021
  14. 14. Marenich, A.V., Cramer, C.J., and Truhlar, D.G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B, 2009, vol. 113, no.18, p. 6378.
  15. 15. Tubbs, R.K., Melting point and heat of fusion of poly(vinyl alcohol), J. Polymer Science Part A: General Papers, 1965, vol. 3, no. 12, p. 4181. https://doi.org/10.1002/pol.1965.100031213
  16. 16. Гафуров, М.М., Рабаданов, К.Ш., Шабанов, Н.С., Третинников, О.Н., Амиров, А.М., Гаджимагомедов, С.Х. Спектры комбинационного рассеяния и динамика тиоцианатиона в пленках поливиниловый спирт-KSCN. Журн. прикл. спектроскопии. 2017. Т. 84(5). С. 684. @@ Gafurov, M.M., Rabadanov, K.S., Shabanov, N.S., Tretinnikov, O.N., Amirov, A.M., and Gadjimagomedov, S.K., Raman Spectra and Dynamics of Thiocyanate Ion in Poly(Vinyl Alcohol)–KSCN Films, J. App l. Spectrosc., 2017, vol. 84(5), p. 744. https://doi.org/10.1007/s10812-017-0539-7
  17. 17. Герцберг, Г. Колебательные и вращательные спектры многоатомных молекул. М.: ИЛ, 1949, 647 с. @@ Herzberg, G., Vibrational and rotational spectra of polyatomic molecules (in Russian), Moscow: IL, 1949, 647 p.
  18. 18. Розенберг, М.Э. Полимеры на основе винилацетата. Л.: Химия, 1983. 176 с. @@ Rosenberg, M.E., Polymers based on vinyl acetate, (in Russian), Leningrad: Chemistry, 1983.176 p.
  19. 19. Третинников, О.Н., Загорская, С.А. Определение степени кристалличности поливинилового спирта методом ИК-Фурье-спектроскопии. Журн. прикл. спектроскопии. 2012. Т. 79(4). С. 538. @@ Tretinnikov, O.N. and Zagorskaya, S.A., Determination of the degree of crystallinity of poly(vinyl alcohol) by FTIR spectroscopy, J. App l. Spectrosc., 2012, vol. 79(4), p. 521.
  20. 20. Lue, S.J. and Shieh, S.J., Modeling water states in polyvinyl alcohol-fumed silica nano-composites, Polymer, 2009, vol. 50, no. 2, p. 654. https://doi.org/10.1016/j.polymer.2008.11.026
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library