RAS Chemistry & Material ScienceЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

INVESTIGATION OF THE BINARY EUTECTIC SYSTEM (1–)(LiClO–KClO)–)AlO BY COMBINATION LIGHT SPECTROSCOPY(CLS)

PII
S30346185S0424857025050021-1
DOI
10.7868/S3034618525050021
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 5
Pages
251-259
Abstract
The physical and chemical properties of the eutectic system(0.76LiClO–0.24 KClO) eut and its heterogeneous composites with nanosized aluminum oxide powder at different temperatures, phase states and concentrations of AlO have been investigated by Raman spectroscopy, differential scanning calorimetry(DSC) and impedance spectroscopy. The addition of AlO leads to an increase in ionic conductivity and a decrease in activation energy. It is shown by Raman spectroscopy that the addition of aluminum oxide leads to the formation of an amorphous phase due to the “destruction” of the crystalline phase of lithium perchlorate.
Keywords
перхлорат лития эвтектика перхлорат калия композиционные твердые электролиты оксид алюминия спектроскопия комбинационного рассеяния света
Date of publication
15.05.2025
Year of publication
2025
Number of purchasers
0
Views
62

References

  1. 1. Duan, Y., Bai, X., Yu, T., Rong, Y., Wu, Y.,& Wang, X., Research progress and prospect in typical sulfide solid-state electrolytes, J. Energy Storage, 2022, vol. 55(PA), 105382. https://doi.org/10.1016/j.est.2022.105382
  2. 2. Han, L., Lehmann, M. L., Zhu, J., Liu, T., Zhou, Z., Tang, X., Heish, C. Te, Sokolov, A. P., Cao, P., Chen, X.C.,& Saito, T., Recent Developments and ChallUNKes in Hybrid Solid Electrolytes for Lithium-Ion Batteries, Frontiers in Energy Research, 2020, vol. 8(September), p. 1. https://doi.org/10.3389/fenrg.2020.00202
  3. 3. Пантюхина, М.И., Плаксин, С.В., Саетова, Н.С., Расковалов, А.А. Новый твердый электролит LiZrTaO(x = 0–0.5) для литиевых источников тока. Электрохимия. 2019. Т. 55(12), С. 1543. https://doi.org/10.1134/s0424857019090111 @@ Pantyukhina, M.I., Plaksin, S.V., Saetova, N.S., and Raskovalov, A.A., New solid electrolyte LiZrTaO(x = 0–0.5) for lithium power sources, UNKs. J. Electrochem., 2019, vol. 55, no. 12, p. 1269.
  4. 4. Joos, M., Conrad, M., Moudrakovski, I., Terban, M.W., Rad, A., Kaghazchi, P., Merkle, R., Dinnebier, R.E., Schleid T., and Maier, J., Ion Transport Mechanism in Anhydrous Lithium Thiocyanate LiS-CN Part II: Frequency Dependence and Slow Jump Relaxation, Phys. Chem. Chem. Phys., 2022. DOI: 10.1039/D2CP01837C
  5. 5. Liang C. C., Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes, J. Electrochem. Soc., 1973, vol. 120, p. 1289.
  6. 6. Uvarov, Nikolai F., Ulihin, Artem S., and Mateyshina, Yulia G., Nanocomposite Alkali-Ion Solid Electrolytes, Advanced Nanomaterials for Catalysis and Energy, 2022, p. 393–434. https://doi.org/10.1039/D2CP01837C
  7. 7. Chen, L., Cros, C., Castagnet, R., and Hagenmuller, P., Electrical conductivity enhancement in an eutectic system containing dispersed second phase particles, Solid State Ionics, 1988, vol. 31, p. 209. https://doi.org/10.1016/0167-2738 (88)90270-6
  8. 8. Рабаданов, К.Ш., Гафуров, М.М., Кубатаев, З.Ю., Амиров, А.М., Ахмедов, М.А., Шабанов, Н.С., Атаев, М. Б. Ионная проводимость и колебательные спектры композитов LiNO3KNO3 + Al 2O3. Электрохимия. 2019. Т. 55. С. 750. DOI: 10.1134/S0424857019060173. @@ Rabadanov, K.S., Gafurov, M.M., Kubataev, Z.Y., Amirov, A.M., Akhmedov, M.A., Shabanov, N.S., and Ataev, M.B., Ion conductivity and vibrational spectra of LiNO3KNO3+ Al2O3 composites, UNKs. J. Electrochem., 2019, vol. 55, no. 6, p. 573. https://doi.org/10.1134/S1023193519060168
  9. 9. Закирьянова, И.Д., Николаева, Е.В., Бове, А.Л., Антонов, Б. Д. Электропроводность и спектры комбинационного рассеяния света дисперсных систем a-AlO- расплав LiCO–NaCO– KCO–NaCl. Расплавы. 2018. № 1. С. 80. DOI: 10.7868/S0235010618010097. @@ Zakiryanova, I.D., Nikolaeva, E.V., Bove, A.L., and Antonov, B.D., Electrical conductivity and Raman spectra of dispersed systems a-AlO-melt LiCO–NaCO– KCO–NaCl, Melts., 2018, no. 1, p. 80.
  10. 10. Gafurov, M.M., Rabadanov, K.S., Ataev, M.B., Amirov, A.M., Akhmedov, M.A., Shabanov, N.S., Kubataev, Z.Y., and Rabadanova, D.I., Research of the structure and dynamic interactions of particles in the LiKNO– R(R = α-AlO, γ-AlO, SiO) and(LiNO–LiClO) – γ-AlO composites in various temperature condition and phase states, Spectrochim. Acta, 2021, vol. 257, p. 119765.
  11. 11. Ulihin, A.S., Uvarov, N.F., Mateyshina, Y.G., Brezhneva, L.I., and Matvienko, A.A., Composite solid electrolytes LiClO–AlO, Solid State Ionics, 2006, vol. 177, p. 2787.
  12. 12. Gafurov, M.M. and Rabadanov, K.S., High-temperature vibrational spectroscopy of molten electrolytes, Appl. Spectroscopy Rev., 2022, p. 120. https://doi.org/10.1080/05704928.2022.2048305
  13. 13. Sulaiman, M., Che Su, N., and Mohamed, N., Sol-gel synthesis and characterization of β-MgSO: Mg(NO)–MgO composite solid electrolyte, Ionics, 2017, vol. 23, p. 443. https://doi.org/10.1007/s11581-016-1854-3
  14. 14. Wu, ChUNK-Wei, Ren, Xue, Zhou, Wu-Xing, Xie, GuofUNK, and Zhang, Gang, Thermal stability and thermal conductivity of solid electrolytes, APL Mater., 2022, vol. 10, 040902. https://doi.org/10.1063/5.0089891
  15. 15. Amirov, A.M., Suleymanov, S.I., Gafurov, M.M., Ataev, M.B., and Rabadanov, K.S., Study of the MNO3–Al2O3 nanocomposites by differential scanning calorimetry, J. Thermal Analysis and Calorimetry, 2022, vol. 147(17), p. 9283. https://doi.org/10.1007/s10973-022-11256-0
  16. 16. Накамото, К. ИК-спектры и спектры КР неорганических и координационных соединений/ пер. с англ. М.: Мир, 1991. 536 с.[Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley-Interscience, 1991. 536 p.]
  17. 17. Кубатаев, З.Ю., Гафуров, М.М., Рабаданов, К.Ш., Амиров, А.М., Ахмедов, М.А., Какагасанов, М.Г. Электрохимия. 2023. Т. 59. С. 474. @@ Kubataev, Z.Yu., Gafurov, M.M., Rabadanov, K.Sh., Amirov, A.M., Akhmedov, M.A., and Kakagasanov, M.G, The Effect of the Nanosized Oxide Filler on the Structure and Conductivity of Composite(1-x)(LiClO4NaClO4)xAl2O3, UNKs. J. Electrochem., 2023, vol. 59, p. 598. https://doi.org/10.1134/S1023193523080050
  18. 18. Kubataev, Z.Yu., Gafurov, M.M., Rabadanov, K.Sh., Akhmedov, M.A., and Amirov, A.M., Investigation of Raman spectra and ionic conductivity of composites based on NaClO4 and KClO4 Salts obtained by mechanoactivation, Electrochem. Mater. and Technol., 2024, vol. 3, no. 1, p. 20243030. https://doi.org/10.15826/elmattech.2024.3.030
  19. 19. Kubataev, Z.Yu., Gafurov, M.M., Rabadanov, K.Sh., and Amirov, A.M., Effect of nanosized oxides on structural and dynamic properties of composites based on LiClO4, Bull. Russ. Acad. Sci.: Physics, 2023, vol. 87, no. S1, p. S21. https://doi.org/10.1134/s1062873823704361
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library