RAS Chemistry & Material ScienceЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

Voltammetric and discharge characteristics of hydrogen-chlorate current generator with sulfuric acid electrolyte

PII
S3034618525030039-1
DOI
10.7868/S3034618525030039
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 3
Pages
187-198
Abstract
Operation of a single cell of redox-flow hydrogen-halogenate current generator which converts the energy of the oxidation reaction of gaseous hydrogen by sodium chlorate in aqueous sulfuric-acid solution into electric energy with the use of a membrane-electrode assembly of the composition: (–) H2, Pt–C // PEM // NaClO3, C (+) has been studied. A combined load operation regime (which includes stages of potentio- and galvanostatic control) has been applied, in order to take into account specific features of the chlorate electroreduction half-reaction, i. e. its redox-mediator autocatalytic mechanism (EC-autocat). For aqueous electrolytes containing various sulfuric acid contents, the system parameters determining the power and efficiency of the hydrogen-chlorate current generator have been established: faradaic and energy efficiencies, average discharge power and time to reach the steady-state mode. It has been found that the hydrogen-chlorate cell under study functions most efficiently for the 5 M sulfuric-acid electrolyte: such a cell has reached the constant-current mode to generate the 0.25 A/cm2 current density within one and a half minutes; it has been able to convert the chemical energy into the electric one with the 55% efficiency at the average specific discharge power of 0.23 W/cm2.
Keywords
водородно-хлоратный генератор тока редокс-медиаторный автокатализ плотность тока и мощность разряда фарадеевская (зарядовая) и энергетическая эффективности время выхода на стационарный режим
Date of publication
17.03.2025
Year of publication
2025
Number of purchasers
0
Views
75

References

  1. 1. Olabi, A.G., Onumaegbu, C., Wilberforce, T., Ramadan, M., Abdelkareem, M.A., and Al-Alami, A.H., Critical review of energy storage systems, Energy, 2021, vol. 214, Article number 118987.
  2. 2. Rabuni, M.F., Li, T., Othman, M.H.D., Adnan, F.H., and Li, K., Progress in Solid Oxide Fuel Cells with Hydrocarbon Fuels, Energies, 2023, vol. 16, no. 17, Article number 6404.
  3. 3. Lee, A.P.C. and Lee, C., It's time for an update – A perspective on fuel cell electrodes. Can. J. Chem. Eng., 2023, vol. 101, no. 11, p. 6050.
  4. 4. Belhaj, I., Faria, M., Sljukic, B., Geraldes, V., and Santos, D.M., Bipolar Membranes for Direct Borohydride Fuel Cells – A Review, Membranes, 2023, vol. 13, no. 8, Article number 730.
  5. 5. Muller, K., Thiele, S., and Wasserscheid, P., Evaluations of concepts for the integration of fuel cells in liquid organic hydrogen carrier systems, Energy & fuels, 2019, vol. 33, no. 10, p. 10324.
  6. 6. Hassan, Q., Azzawi, I.D., Sameen, A.Z., and Salman, H.M., Hydrogen fuel cell vehicles: Opportunities and challenges, Sustainability, 2023, vol. 15, no. 15, Article number 11501.
  7. 7. Braun, K., Wolf, M., De Oliveira, A., Preuster, P., Wasserscheid, P., Thiele, S., Weiss, L., and Wensing, M., Energetics of Technical Integration of 2‐Propanol Fuel Cells: Thermodynamic and Current and Future Technical Feasibility, Energy technol., 2022, vol. 10, no. 8, Article number 2200343.
  8. 8. Cho, K.T., Tucker, M.C., and Weber, A.Z., A review of hydrogen/halogen flow cells, Energy Technol., 2016, vol. 4, no. 6, p. 655.
  9. 9. Rubio-Garcia, J., Kucernak, A., Zhao, D., Li, D., Fahy, K., Yufit, V., Brandon, N., and Gomez-Gonzalez, M., Hydrogen/manganese hybrid redox flow battery, J. Phys. Energy, 2018, vol. 1, no. 1, Article number 015006.
  10. 10. Preger, Y., Gerken, J.B., Biswas, S., Anson, C.W., Johnson, M.R., Root, T.W., and Stahl, S.S., Quinone-mediated electrochemical O2 reduction accessing high power density with an off-electrode Co–N/C catalyst, Joule, 2018, vol. 2, no. 12, p. 2722.
  11. 11. Lin, G., Chong, P.Y., Yarlagadda, V., Nguyen, T.V., Wycisk, R.J., Pintauro, P.N., Bates, M., Mukerjee, S., Tucker, M.C., and Weber, A.Z., Advanced hydrogen-bromine flow batteries with improved efficiency, durability and cost, J. Electrochem. Soc., 2015, vol. 163, no. 1, p. A5049.
  12. 12. Gunn, N.L., Ward, D.B., Menelaou, C., Herbert, M.A., and Davies, T.J., Investigation of a chemically regenerative redox cathode polymer electrolyte fuel cell using a phosphomolybdovanadate polyoxoanion catholyte, J. Power Sources, 2017, vol. 348, p. 107.
  13. 13. Ge, G., Zhang, C., and Li, X., Multi-electron transfer electrode materials for high-energy-density flow batteries, Next Energy, 2023, vol. 1, no. 3, Article number 100043.
  14. 14. Chen, R., Redox flow batteries for energy storage: Recent advances in using organic active materials, Curr. Opin. Electrochem., 2020, vol. 21, p. 40.
  15. 15. VanGelder, L.E., Kosswattaarachchi, A.M., Forrestel, P.L., Cook, T.R., and Matson, E.M., Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries, Chem. Sci., 2018, vol. 9, no. 6, p. 1692.
  16. 16. Laramie, S.M., Milshtein, J.D., Breault, T.M., Brushett, F.R., and Thompson, L.T., Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries, J. Power Sources, 2016, vol. 327, p. 681.
  17. 17. Fang, X., Cavazos, A.T., Li, Z., Li, C., Xie, J., Wassall, S.R., Zhang, L., and Wei, X., Six-electron organic redoxmers for aqueous redox flow batteries, Chem. Commun., 2022, vol. 58, no. 95, p. 13226.
  18. 18. Tolmachev, Y.V. and Vorotyntsev, M.A., Fuel cells with chemically regenerative redox cathodes, Russ. J. Electrochem., 2014, vol. 50, p. 403.
  19. 19. Han, S.B., Kwak, D.H., Park, H.S., Choi, I.A., Park, J.Y., Kim, S.J., Kim, M.C., Hong, S., and Park, K.W., High‐Performance Chemically Regenerative Redox Fuel Cells Using a NO3–/NO Regeneration Reaction, Angew. Chem. Int. Ed., 2017, vol. 56, no. 11, p. 2893.
  20. 20. Cho, K.T. and Razaulla, T., Redox-mediated bromate based electrochemical energy system, J. Electrochem. Soc., 2019, vol. 166, no. 2, p. A286.
  21. 21. Chinannai, M.F. and Ju, H., Analysis of performance improvement of hydrogen/bromine flow batteries by using bromate electrolyte, Int. J. Hydrogen Energy, 2021, vol. 46, no. 26, p. 13760.
  22. 22. Tolmachev, Y.V., Piatkivskyi, A., Ryzhov, V.V., Konev, D.V., and Vorotyntsev, M.A., Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion, J. Solid State Electrochem., 2015, vol. 19, p. 2711.
  23. 23. Vorotyntsev, M.A., Antipov, A.E., and Konev, D.V., Bromate anion reduction: novel autocatalytic (EC″) mechanism of electrochemical processes. Its implication for redox flow batteries of high energy and power densities, Pure Appl. Chem., 2017, vol. 89, no. 10, p. 1429.
  24. 24. Modestov, A.D., Konev, D.V., Antipov, A.E., Petrov, M.M., Pichugov, R.D., and Vorotyntsev, M.A., Bromate electroreduction from sulfuric acid solution at rotating disk electrode: Experimental study, Electrochim. Acta, 2018, vol. 259, p. 655.
  25. 25. Modestov, A.D., Konev, D.V., Tripachev, O.V., Antipov, A.E., Tolmachev, Y.V., and Vorotyntsev, M.A., A Hydrogen–Bromate Flow Battery for Air‐Deficient Environments, Energy Technol., 2018, vol. 6, no. 2, p. 242.
  26. 26. Modestov, A.D., Konev, D.V., Antipov, A.E., and Vorotyntsev, M.A., Hydrogen-bromate flow battery: can one reach both high bromate utilization and specific power? J. Solid State Electrochem., 2019, vol. 23, p. 3075.
  27. 27. Campbell, A.N. and Paterson, W.G., The conductances of aqueous solutions of lithium chlorate at 25.00°C and at 131.8°C, Can. J. Chem., 1958, vol. 36, no. 6, p. 1004.
  28. 28. Campbell, A.N., Kartzmark, E.M., and Maryk, W.B., The systems sodium chlorate-water-dioxane and lithium chlorate-water-dioxane, at 25°, Can. J. Chem., 1966, vol. 44, no. 8, p. 935.
  29. 29. Hanley, J., Chevrier, V.F., Berget, D.J., and Adams, R.D., Chlorate salts and solutions on Mars, Geophys. Res. Lett., 2012, vol. 39, no. 8, Article number L08201.
  30. 30. Konev, D.V., Goncharova, O.A., Tolmachev, Y.V., and Vorotyntsev, M.A., The Role of Chlorine Dioxide in the Electroreduction of Chlorates at low pH, Russ. J. Electrochem., 2022, vol. 58, no. 11, p. 978.
  31. 31. Konev, D.V., Istakova, O.I., Ruban, E.A., Glazkov, A.T., and Vorotyntsev, M.A., Hydrogen-Chlorate Electric Power Source: Feasibility of the Device, Discharge Characteristics and Modes of Operation, Molecules, 2022, vol. 27, no. 17, Article number 5638.
  32. 32. Kieffer, R.G. and Gordon, G., Disproportionation of chlorous acid. I. Stoichiometry, Inorg. Chem., 1968, vol. 7, no. 2, p. 235.
  33. 33. Romanova, N.V., Konev, D.V., Muratov, D.S., Ruban, E.A., Tolstel, D.O., Galin, M.Z., Kuznetsov, V.V., and Vorotyntsev, M.A., Characteristics of the Charge–Discharge Cycle of Hydrogen–Bromine Battery with IrO2–TiO2-Titanium Felt Cathode Operating in the Full Capacity Utilization Mode, Russ. J. Electrochem., 2024, vol. 60, no. 12, p. 1061.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library