RAS Chemistry & Material ScienceЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

High-entropy columbites: structure, optical and electrical properties

PII
S0424857025030018-1
DOI
10.31857/S0424857025030018
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 3
Pages
172-179
Abstract
A high-entropy composition (Mg0.2Zn0.2Ni0.2Co0.2Mn0.2)Nb2O6 with a columbite structure and its Ti-substituted composition (5%) were synthesized. The synthesis was carried out using a modified method of combustion solutions followed by high-temperature sintering. X-ray analysis and scanning electron microscopy were used for characterization of the ceramics. According to diffuse reflectance spectra, the band gap of direct electronic transitions was calculated (Egdir ≈ 2.98–3.05 eV). Solid solutions are characterized predominantly by electronic conductivity. Substitution of niobium cations with titanium leads to an increase in conductivity by 1.2 orders of magnitude in the temperature range 160–750°C.
Keywords
высокоэнтропийный состав структура колумбита ширина запрещенной зоны проводимость
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Lee, H.J., Hong, K.S., Kim, S.J., and Kim, I.T., Dielectric properties of MNb2O6 compounds (where M = Ca, Mn, Co, Ni, or Zn), Mater. Res. Bull., 1997, vol. 32, p. 847.
  2. 2. Belous, A., Ovchar, O., Jancar, B., Spreitzer, M., Annino, G., Grebennikov, D., and Mascher, P., The effect of chemical composition on the structure and dielectric properties of the columbites A2+ MNb2O6, J. Electrochem. Soc., 2009, vol. 156, p. G206.
  3. 3. Zhang, Y.C., Yue, Z.X., Gui, Z.L., and Li, L.T., Microwave dielectric properties of (Zn1–xMgx) Nb2O6, ceramics, Mater. Lett., 2003, vol. 57, p. 4531.
  4. 4. Zhang, Y.C., Yue, Z.X., Qi, X., Li, B., Gui, Z.L., and Li, L.T., Microwave dielectric properties of Zn(Nb1–xTax)2O6 ceramics, Mater. Lett., 2004, vol. 58, p. 1392.
  5. 5. Kim, J.H. and Kim, E.S., Effect of isovalent substitution on microwave dielectric properties of Mg4Nb2O9 ceramics, J. Electron. Mater., 2019, vol. 48, p. 2411.
  6. 6. Thirumal, M. and Ganguli, A.K., Synthesis and dielectric properties of magnesium niobate-magnesium tantalate solid solutions, Mater. Res. Bull., 2001, vol. 36, p. 2421.
  7. 7. Pullar, R.C., Vaughan, C., and McN Alford, N., The effects of sintering aids upon dielectric microwave properties of columbite niobates, M2+Nb2O6, J. Phys. D. Appl. Phys., 2004, vol. 37, p. 348.
  8. 8. Huang, Z. and Li L., Enhanced microwave dielectric performances of niobate structured Zn(Nb1-2xZrxWx)2O6 ceramics, Ceram. Int., 2024, vol. 50, p. 12081.
  9. 9. Cheng, Ch., Wu, D., Gong, T., Yan, Y., Liu, Y., Ji, W., Hou, L., and Yuan, Ch., Internal and external cultivation design of zero‐strain columbite‐structured MNb2O6 toward lithium-Ion capacitors as competitive anodes, Adv. Energy Mater., 2023, vol. 13, p. 2302107.
  10. 10. De Luna, Y., N.B., Ma, Sh., Li, G., and Bensalah, N., Highly stable free-standing cobalt niobate with orthorhombic structure as anode material for Li-ion batteries, ChemElectroChem, 2024, vol. 11, p. e202300627.
  11. 11. Morkhova, Y.A., Koroleva, M.S., Egorova, A.V., Pimenov, A.A., Krasnov, A.G., Makeev, B.A., Blatov, V.A., and Kabanov, A.A., Magnocolumbites Mg1–xMxNb2O6–δ (x = 0, 0.1, and 0.2; M = Li and Cu) as new oxygen ion conductors: Theoretical Assessment and Experiment, J. Phys. Chem. C, 2023, vol. 127, p. 52.
  12. 12. Morkhova, Y.A., Koroleva, M.S., Egorova, A.V., Krasnov, A.G., Starostina, I.A., and Kabanov, A.A., Exhaustive study of electrical conductivity in the MNb2–xTixO6–0.5x (M = Mg, Ca, Zn; x = 0, 0.1, 0.2) columbites, ECS Adv., 2024, vol. 3, p. 024504.
  13. 13. Arroyo Y De Dompablo, M.E., Lee, Y.L., and Morgan, D., First principles investigation of oxygen vacancies in columbite MNb2O6 (M = Mn, Fe, Co, Ni, Cu), Chem. Mater., 2010, vol. 22, p. 906.
  14. 14. López-Blanco, M., Amador, U., and García-Alvarado, F., Structural characterization and electrical properties of NiNb2–xTaxO6 (0 ≤ x ≤ 2) and some Ti-substituted derivatives, J. Solid State Chem., 2009, vol. 182, p. 1944.
  15. 15. Orera, A., García-Alvarado, F., and Irvine, J.T.S., Effect of Ti-substitution on the electrical properties of MnNb2O6–δ, Chem. Mater., 2007, vol. 19, p. 2310.
  16. 16. Sarkar, A., Wang, Q., Schiele, A., Chellali, M.R., Bhattacharya, S.S., Wang, D., Brezesinski, T., Hahn, H., Velasco, L., and Breitung, B., High-Entropy oxides: fundamental aspects and electrochemical properties, Adv. Mater., 2019, vol. 31, p. 1806236.
  17. 17. Li, F., Zhou, L., Liu, J.X., Liang, Y., and Zhang, G.J., High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials, J. Adv. Ceram., 2019, vol. 8, p. 576.
  18. 18. Ren, K., Wang, Q., Shao, G., Zhao, X., and Wang, Y., Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating, Scr. Mater., 2020, vol. 178, p. 382.
  19. 19. Feng, C., Zhou, Y., Chen, M., Zou, L., Li, X., An, X., Zhao, Q., Xiaokaiti, P., Abudula, A., Yan, K., and Guan, G., High-entropy spinel (FeCoNiMnAl)3O4 with three-dimensional microflower structure for stable seawater oxidation, Appl. Catal. B Environ. Energy, 2024, vol. 349, p. 123875.
  20. 20. Rodríguez-Carvajal, J., Recent advances in magnetic structure determination by neutron powder diffraction, Phys. B Phys. Condens. Matter, 1993, vol. 192, p. 55.
  21. 21. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides, Acta Cryst. А, 1976, vol. 32, p. 751.
  22. 22. Pullar, R.C., The synthesis, properties, and applications of columbite niobates (M2+Nb2O6): A critical review, J. Am. Ceram. Soc., 2009, vol. 92, p. 563.
  23. 23. Brahma, S., Choudhary, R.N.P., and Thakur, A.K., AC impedance analysis of LaLiMo2O8 electroceramics, Phys. B Condens. Matter., 2005, vol. 355, p. 188.
  24. 24. Nasri, S., Oueslati, A., Chaabane, I., and Gargouri, M., AC conductivity, electric modulus analysis and electrical conduction mechanism of RbFeP2O7 ceramic compound, Ceram. Int., 2016, vol. 42, p. 14041.
  25. 25. Tan, K.B., Khaw, C.C., Lee, C.K., Zainal, Z., Tan, Y.P., and Shaari, H., High temperature impedance spectroscopy study of non-stoichiometric bismuth zinc niobate pyrochlore, Mater. Sci. Pol., 2009, vol. 27, p. 947.
  26. 26. Tan, P.Y., Tan, K.B., Khaw, C.C., Zainal, Z., Chen, S.K., and Chon, M.P., Structural and electrical properties of bismuth magnesium tantalate pyrochlores, Ceram. Int., 2012, vol. 38, p. 5401.
  27. 27. Koroleva, M.S., Ishchenko, A.V., Vlasov, M.I., Krasnov, A.G., Istomina, E.I., Shein, I.R., Weinstein, I.A., and Piir, I.V., Structural, Optical, Luminescence, and Electrical Properties of Eu/Li- and Eu/Na-Codoped Magnesium Bismuth Niobate Pyrochlores, Inorg. Chem., 2022, vol. 61, p. 9295.
  28. 28. Kamimura, S., Abe, S., Tsubota, T., and Ohno, T., Solar-driven H2 evolution over CuNb2O6: Effect of two polymorphs (monoclinic and orthorhombic) on optical property and photocatalytic activity, J. Photochem. Photobiol. A Chem., 2018, vol. 356, p. 263.
  29. 29. El Bachiri, A., El Hasnaoui, M., Louardi, A., Narjis, A., and Bennani, F., Structural and dielectric studies for the conduction mechanism analyses of lithium-niobate oxide ferroelectric ceramics, Phys. B Condens. Matter., 2019, vol. 571, p. 181.
  30. 30. Jonscher, A.K., A new understanding of the dielectric relaxation of solids, J. Mater. Sci., 1981, vol. 16, p. 2037
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library