RAS Chemistry & Material ScienceЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

Electrodeposited composite of poly-3,4-ethylenedioxythiophene with fullerenol photoactive in the near-IR range

PII
10.31857/S0424857024100052-1
DOI
10.31857/S0424857024100052
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 10
Pages
712-721
Abstract
The electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of a water-soluble Na+-containing fullerene with hydroxyl groups was studied. Spectral methods for monitoring the progress of electrosynthesis have shown that during the polymerization of 3,4-ethylenedioxythiophene, fullerenol is included in the film composition, regardless of the fullerenol concentrations used in the synthesis. The electronic structure, morphology, spectroelectrochemical, electrochemical properties and near-IR photoconductivity of composite films of poly-3,4-ethylenedioxythiophene with fullerenol were studied for the first time. A mechanism of photoconductivity has been proposed, related to the fact that during photoexcitation of the composite, electron transfer from the polaron (bipolaron) state of poly-3,4-ethylenedioxythiophene to the LUMO level of fullerenol increases the concentration of photogenerated charge carriers.
Keywords
ПЭДОТ фуллеренол электрохимическая полимеризация спектроэлектрохимия фотопроводимость
Date of publication
25.10.2024
Year of publication
2024
Number of purchasers
0
Views
34

References

  1. 1. Fan, B., Wang, P., Wang, L., and Shi, G., Polythiophene/Fullerene Bulk Heterojunction Solar Cell Fabricated via Electrochemical Co-Deposition, Sol. Energy Mater. Sol. Cells, 2006, vol. 90, p. 3547. https://doi.org/10.1016/j.solmat.2006.06.042
  2. 2. Nasybulin, E., Cox, M., Kymissis, I., and Levon, K., Electrochemical Codeposition of Poly(Thieno[3,2-b]Thiophene) and Fullerene: An Approach to a Bulk Heterojunction Organic Photovoltaic Device, Synth. Met., 2012, vol. 162, p. 10. https://doi.org/10.1016/j.synthmet.2011.10.024
  3. 3. Reynoso, E., Durantini, A.M., Solis, C.A., Macor, L.P., Otero, L.A., Gervaldo, M.A., Durantini, E.N., and Heredia, D.A., Photoactive Antimicrobial Coating Based on a PEDOT-Fullerene C60 polymeric Dyad, RSC Adv., 2021, vol. 11, p. 23519. https://doi.org/10.1039/d1ra03417k
  4. 4. Suárez, M.B., Aranda, C., Macor, L., Durantini, J., Heredia, D.A., Durantini, E.N., Otero, L., Guerrero A., and Gervaldo, M., Perovskite Solar Cells with Versatile Electropolymerized Fullerene as Electron Extraction Layer, Electrochim. Acta, 2018, vol. 292, p. 697. https://doi.org/10.1016/j.electacta.2018.09.196
  5. 5. Dominguez-Alfaro, A., Jénnifer Gómez, I., Alegret, N., Mecerreyes, D., and Prato, M., 2D and 3D Immobilization of Carbon Nanomaterials Into Pedot Via Electropolymerization of a Functional Bis-Edot Monomer, Polymers, 2021, vol. 13, p. 1. https://doi.org/10.3390/polym13030436
  6. 6. Alegret, N., Dominguez-Alfaro, A., Salsamendi, M., Gomez, I.J., Calvo, J., Mecerreyes, D., and Prato, M., Effect of the Fullerene in the Properties of Thin PEDOT/C60 Films Obtained by Co-Electrodeposition, Inorganica Chim. Acta, 2017, vol. 468, p. 239. https://doi.org/10.1016/j.ica.2017.04.059
  7. 7. Dumitriu, C., Mousavi, Z., Latonen, R.M., Bobacka, J., and Demetrescu, I., Electrochemical Synthesis and Characterization of Poly(3,4- Ethylenedioxythiophene) Doped with Sulfonated Calixarenes and Sulfonated Calixarene-Fullerene Complexes, Electrochim. Acta, 2013, vol. 107, p. 178. https://doi.org/10.1016/j.electacta.2013.05.140
  8. 8. Bobylev, A.G., Kornev, A.B., Bobyleva, L.G., Shpagina, M.D., Fadeeva, I.S., Fadeev, R.S., Deryabin, D.G., Balzarini, J., Troshin, P.A., and Podlubnaya, Z.A., Fullerenolates: Metallated Polyhydroxylated Fullerenes with Potent Anti-Amyloid Activity, Org. Biomol. Chem., 2011, vol. 9, p. 5714. https://doi.org/10.1039/c1ob05067b
  9. 9. Husebo, L.O., Sitharaman, B., Furukawa, K., Kato, T., and Wilson, L.J., Fullerenols Revisited as Stable Radical Anions, J. Amer. Chem. Soc., 2004, vol. 126, p. 12055. https://doi.org/10.1021/ja047593o
  10. 10. Troshin, P.A., Astakhova, A.S., and Lyubovskaya, R.N., Synthesis of Fullerenols from Halofullerenes, Fullerenes Nanotub. Carbon Nanostructures, 2005, vol. 13, p. 331. https://doi.org/10.1080/15363830500237192
  11. 11. Namazian, M., Lin, C.Y., and Coote, M.L., Benchmark Calculations of Absolute Reduction Potential of Ferricinium/Ferrocene Couple in Nonaqueous Solutions, J. Chem. Theory Comput., 2010, vol. 6, p. 2721. https://doi.org/10.1021/ct1003252
  12. 12. Krukiewicz, K., Kruk, A., and Turczyn, R., Evaluation of Drug Loading Capacity and Release Characteristics of PEDOT/Naproxen System: Effect of Doping Ions, Electrochim. Acta, 2018, vol. 289, p. 218. https://doi.org/10.1016/j.electacta.2018.09.011
  13. 13. Gribkova, O.L. and Nekrasov, A.A., Spectroelectrochemistry of Electroactive Polymer Composite Materials, Polymers, 2022, vol. 14, p. 3201. https://doi.org/10.3390/polym14153201
  14. 14. Garreau, S., Duvail, J.L., and Louarn, G., Spectroelectrochemical Studies of Poly(3,4-Ethylenedioxythiophene) in Aqueous Medium, Synth. Met., 2001, vol. 125, p. 325. https://doi.org/10.1016/S0379–6779 (01)00397–6
  15. 15. Zozoulenko, I., Singh, A., Singh, S.K., Gueskine, V., Crispin, X., and Berggren, M., Polarons, Bipolarons, and Absorption Spectroscopy of PEDOT, ACS Appl. Polym. Mater., 2019, vol. 1, p. 83. https://doi.org/10.1021/acsapm.8b00061
  16. 16. Janssen, R.A.J., Smilowitz, L., Sariciftci, N.S., and Moses, D., Triplet-State Photoexcitations of Oligothiophene Films and Solutions, J. Chem. Phys., 1994, vol. 101, p. 1787. https://doi.org/10.1063/1.467757
  17. 17. Peintler-Kriván, E., Tóth, P.S., and Visy, C., Combination of in Situ UV–Vis-NIR Spectro-Electrochemical and a. c. Impedance Measurements: A New, Effective Technique for Studying the Redox Transformation of Conducting Electroactive Materials, Electrochem. commun., 2009, vol. 11, p. 1947. https://doi.org/10.1016/j.elecom.2009.08.025
  18. 18. Kabanova, V., Gribkova, O., and Nekrasov, A., Poly(3,4-Ethylenedioxythiophene) Electrosynthesis in the Presence of Mixtures of Flexible-Chain and Rigid-Chain Polyelectrolytes, Polymers, 2021, vol. 13, p. 3866. https://doi.org/10.3390/polym13223866
  19. 19. Nekrasov, A.A., Nekrasova, N. V., Savel’ev, M.A., Khuzin, A.A., Barachevsky, V.A., Tulyabaev, A.R., and Tuktarov, A.R., Electrochemical Investigation of a Photochromic Spiropyran Containing a Pyrrolidinofullerene Moiety, Mendeleev Commun., 2023, vol. 33, p. 505. https://doi.org/10.1016/j.mencom.2023.06.021
  20. 20. Meskers, S.C.J., van Duren, J.K.J., and Janssen, R.A.J., Stimulation of Electrical Conductivity in a π-Conjugated Polymeric Conductor with Infrared Light, J. Appl. Phys., 2002, vol. 92, p. 7041. https://doi.org/10.1063/1.1519948
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library