RAS Chemistry & Material ScienceЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

Magnetron technology for manufacturing electrodes of electrolysers with a proton-exchange membrane

PII
10.31857/S0424857024030071-1
DOI
10.31857/S0424857024030071
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 3
Pages
221-234
Abstract
The results of the development and study of catalysts for the anode of water decomposition electrolyzers with a proton exchange membrane are presented. To deposit catalytic layers on a titanium carrier, the magnetron method of sputtering composite targets in a vacuum was used. Iridium and ruthenium were used as the main catalyst, and molybdenum, chromium, and titanium were used as functional additives. The electrochemical and structural characteristics of catalytic coatings have been studied. Using voltammetry methods, cyclic current-voltage and anodic characteristics of catalytic compositions were obtained, including at different temperatures of subsequent heat treatment in air, as well as at different measurement temperatures. The Tafel slopes of the current-voltage characteristics of the composite anodes, as well as the currents at a potential of 1.55 V (RHE), were determined. It has been shown that the minimum slopes were obtained for the Ir–Ru–Mo–Ti catalytic composition (b = 40–63 mV/dec), and the maximum currents for the Ir–Mo–Cr catalytic composition (i = 100–110 mA/cm2 at E = 1.55 V (RHE)). It has been shown that the magnitude of CV adsorption currents in the anodic potential region correlates with the coefficient b of the Tafel equation E–lgi and determines the number of catalytic centers for the deprotonization stage of the oxygen evolution reaction. However, the activity of the catalyst in the OER is determined not only by the number of such centers, but mainly by the functional features of the catalyst itself, i.e., the composition of the catalyst and the conditions for its preparation (including the temperature of subsequent heat treatment of the catalyst in air). Catalytic compositions based on iridium with additions of molybdenum and chromium have higher activity in OER. Structural studies have shown that during magnetron sputtering of composite targets, even with small catalyst loadings, dispersed structures are formed, which on real porous titanium anodes should form on the front surface with a higher catalyst content.
Keywords
электролизер разложения воды протонообменная мембрана анод функциональная добавка магнетрон композитная мишень
Date of publication
15.03.2024
Year of publication
2024
Number of purchasers
0
Views
43

References

  1. 1. Нефедкин, С.И. Автономные энергетические установки и системы. М.: Изд. МЭИ, 2018. 220 с. ISBN 978-5-7046-1847-8
  2. 2. Кулешов, Н.В., Попов, С.К., Захаров, С.В., Нефедкин, С.И., Кулешов, В.Н., Петин, С.Н., Рогалев, А.Н., Фатеев, В.Н. Водородная энергетика: Учебник. М.: Изд. МЭИ, 2021. – 546 с. ISBN 978-5-7046-2438-7
  3. 3. https://newatlas.com/energy/worlds-largest-offshore-wind-farm-hornsea-first-power/.
  4. 4. Park, S., Shao, Y., Liu, J., and Wang, Y., Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective, Energy Environ Sci., 2012, vol. 5, p. 9331.
  5. 5. Carmo, M., Fritz, D.L., Mergel, J., and Stolten, D., A Comprehensive Review on PEM Water Electrolysis, Intern. J. Hydrogen Energy, 2013, vol. 38, p. 4901.
  6. 6. Kadakia, K., Datta, M.K., Velikokhatnyi, O.I., Jampani, P., Park, S.K., Saha, P., Poston, J.A., Manivannan, A., and Kumta, P.N., Novel (Ir,Sn ,Nb)O 2 anode electrocatalysts with reduced noble metal content for PEM based water electrolysis, Intern. J. Hydrogen Energy, 2012, vol. 37, p. 3001.
  7. 7. Kadakia, K., Datta, M.K., Velikokhatnyi, O.I., Jampani, P.H., and Kumta, P.N., Fluorine doped (Ir,Sn ,Nb)O 2 anode electro-catalyst for oxygen evolution via PEM based water electrolysis, Intern. J. Hydrogen Energy, 2014, vol. 39, p. 664.
  8. 8. Петрий, O.A. Электросинтез наноструктур и наноматериалов. Успехи химии. 2015. Т. 84. С. 159.
  9. 9. Yagi, M., Tomita, E., and Kuwabara, T., Remarkably high activity of electrodeposited IrO 2 film for electrocatalytic water oxidation, J. Electroanal. Chem., 2005, vol. 579, p. 83.
  10. 10. El Sawy, E.N. and Birss, V.I., Nano-porous iridium and iridium oxide thin films formed by high efficiency electrodeposition, J. Mater. Chem., 2009, vol. 19, p. 8244.
  11. 11. Xu, J., Liu, G., Li, J., and Wang, X., The electrocatalytic properties of an IrO 2  /SnO 2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction, Electrochim. Acta, 2012, vol. 59, p. 105.
  12. 12. Mayousse, E., Maillard, F., Fouda-Onana, F., Sicardy, O., and Guillet, N., Synthesis and characterization of electrocatalysts for the oxygen evolution in PEM water electrolysis, Intern. J. Hydrogen Energy, 2011, vol. 36 (17), p. 10474.
  13. 13. Wu, X., Tayal, J., Basu, S., and Scott, K., Nano-crystalline Ru x Sn1-xO 2 powder catalysts for oxygen evolution reaction in proton exchange membrane water electrolysers, Intern. J. Hydrogen Energy, 2011, vol. 36, p. 14796.
  14. 14. De Pauli, C.P. and Trasatti, S., Electrochemical surface characterization of IrO 2 +SnO 2 mixed oxide electrocatalysts, J. Electroanal. Chem., 1995, vol. 396, p. 161.
  15. 15. De Pauli, C.P. and Trasatti, S., Composite materials for electrocatalysis of 02 evolution: IrO 2 +SnO 2 in acid solution, J. Electroanal. Chem., 2002, vol. 538–539, p. 145.
  16. 16. Fierro, S., Kapałka, A., and Comninellis, C., Electrochemical comparison between IrO 2 prepared by thermal treatment of iridium metal and IrO 2 prepared by thermal decomposition of H 2 IrCl 6 solution, Electrochem. Commun., 2010, vol. 12, p. 172.
  17. 17. Murakami, Y., Tsuchiya, S., Yahikozawa, K., and Takasu, Y., Preparation of ultrafine IrO 2 -Ta 2 O 5 binary oxide particles by a sol-gel process, Electrochim. Acta, 1994, vol. 39, p. 651.
  18. 18. Marshall, A., Børresen, B., Hagen, G., Tsypkin, M., and Tunold, R., Electrochemical characterisation of Ir x Sn 1-x O 2 powders as oxygen evolution electrocatalysts, Electrochim. Acta, 2006, vol. 51, p. 3161.
  19. 19. Marshall, A.T., Sunde, S., Tsypkin, M., and Tunold, R., Performance of a PEM water electrolysis cell using Ir x Ru y Ta z O 2 electrocatalysts for the oxygen evolution electrode, Intern. J. Hydrogen Energy, 2007, vol. 32, p. 2320.
  20. 20. Song, S., Zhang, H., Ma, X., Shao, Z., Baker, R.T., and Yi, B., Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers, Intern. J. Hydrogen Energy, 2008, vol. 33, p. 4955.
  21. 21. Tolstoy, V.P., Kaneva, M.V., Lobinsky, A.A., and Koroleva, A.V., Direct successive ionic layer deposition of nanoscale iridium and tin oxide on titanium surface for electrocatalytic application in oxygen evolution reaction during water electrolysis in acidic medium, J. Alloys and Compounds, 2020, vol. 834, p. 155205.
  22. 22. Нефедкин, С.И, Климова, М.А., Рябухин, А.В., Чижов, А.В., Левин, И.И. Каталитические композиции, полученные в магнетроне из композитных мишеней для электродов топливных элементов и электролизеров с протонообменной мембраной. Российские нанотехнологии. 2021. Т. 16. № 4. С. 126.
  23. 23. Нефедкин, С.И, Климова, М.А., Коломейцева, Е.А., Клочнев, М.К., Левин, Э.Е., Петрий, О.А. Дисперсные катализаторы на основе Pt и Ir, синтезированные в магнетроне, для электролизеров воды с твердым полимерным электролитом. Электрохимия. 2017. Т. 53. С. 321. https://doi.org/10.7868/S04248570170301122
  24. 24. Sudipta, De, Zhang, Jiaguang, Luque, Rafael, and Yan, Ning, Ni-based bimetallic heterogeneous catalysts for energy and environmental applications, Energy Environ. Sci., 2016, vol. 9, p. 3314
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library