RAS Chemistry & Material ScienceЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

Performance analysis of proton exchange membrane fuel cell battery: effect of ambient temperature

PII
10.31857/S0424857024030048-1
DOI
10.31857/S0424857024030048
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 3
Pages
191-197
Abstract
A model of a membrane electrode assembly is considered, taking into account the influence of various climatic conditions on power density. An analysis of the developed model is demonstrated in comparison with a proton exchange membrane fuel cell (PEMFC) stack operating at different ambient temperatures. The discrepancy between the obtained data (less than 10%) between the model and experiment in the temperature range from −10 to +10°С is shown. The optimal ambient temperature for battery operation was 10°C. The decrease in specific power with an increase in temperature for every 10°C above zero was 0.006–0.008 W/cm2, which is an insignificant change and can be compensated by using a buffer energy storage device.
Keywords
топливные элементы с открытым катодом моделирование стек ПОМТЭ
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Kurnia, J.C., Chaedir, B.A., Sasmito, A.P., & Shamim, T., Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions, Appl. Energy, 2021, vol. 283, p. 116359.
  2. 2. Zhao, C., Xing, S., Chen, M., Liu, W., & Wang, H., Optimal design of cathode flow channel for air-cooled PEMFC with open cathode, Intern. J. Hydrogen Energy, 2020, vol. 45, no. 35, p. 17771.
  3. 3. Jeong, S.U., Cho, E.A., Kim, H.J., Lim, T.H., Oh, I.H., & Kim, S.H., A study on cathode structure and water transport in air-breathing PEM fuel cells, J. Power Sources, 2006, vol. 159, no. 2, p. 1089.
  4. 4. Wu, J., Galli, S., Lagana, I., Pozio, A., Monteleone, G., Yuan, X. Z., & Wang, H., An air-cooled proton exchange membrane fuel cell with combined oxidant and coolant flow, J. Power Sources, 2009, vol. 188, no. 1, p. 199.
  5. 5. Sasmito, A.P., Birgersson, E., Lum, K., & Mujumdar, A.S., Fan selection and stack design for open-cathode polymer electrolyte fuel cell stacks, Renew. Energy, 2012, vol. 37, no. 1, p. 325.
  6. 6. Sasmito, A.P., Birgersson, E., and Mujumdar, A.S., A novel flow reversal concept for improved thermal management in polymer electrolyte fuel cell stacks, Intern. J. Therm. Sci., 2012, vol. 54, p. 242.
  7. 7. Sasmito, A.P., Lum, K.W., Birgersson, E., & Mujumdar, A.S., Computational study of forced air-convection in open-cathode polymer electrolyte fuel cell stacks, J. Power Sources, 2010, vol. 195, no. 17, p. 5550.
  8. 8. Shahsavari, S., Desouza, A., Bahrami, M., & Kjeang, E., Thermal analysis of air-cooled PEM fuel cells, Intern. J. Hydrogen Energy, 2012, vol. 37, no. 23, p. 18261.
  9. 9. Akbari, M., Tamayol, A., and Bahrami, M., Thermal assessment of convective heat transfer in air-cooled PEMFC stacks: an experimental study, Energy Procedia, 2012, vol. 29, p. 1.
  10. 10. Faddeev, N., Anisimov, E., Belichenko, M., Kuriganova, A., & Smirnova, N., Investigation of the Ambient Temperature Influence on the PEMFC Characteristics: Modeling from a Single Cell to a Stack, Processes, 2021, vol. 9, no. 12, p. 2117.
  11. 11. Bhaiya, M., Putz, A., and Secanell, M., Analysis of non-isothermal effects on polymer electrolyte fuel cell electrode assemblies, Electrochim. Acta, 2014, vol. 147, p. 294.
  12. 12. Springer, T.E., Zawodzinski, T.A., and Gottesfeld, S., Polymer electrolyte fuel cell model, J. Electrochem. Soc., 1991, vol. 138, no. 8, p. 2334.
  13. 13. Natarajan, D. and Van Nguyen, T., A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors, J. Electrochem. Soc., 2001, vol. 148, no. 12, p. A1324.
  14. 14. Plawsky, J. L., Transport Properties of Materials, Transport Phenomena Fundamentals. CRC Press, 2020. p. 81-128.
  15. 15. Weber, A.Z., Borup, R.L., Darling, R.M., Das, P.K., Dursch, T.J., Gu, W., & Zenyuk, I.V., A critical review of modeling transport phenomena in polymer-electrolyte fuel cells, J. Electrochem. Soc., 2014, vol. 161, no. 12, p. F1254.
  16. 16. Holzer, L., Pecho, O., Schumacher, J., Marmet, P., Stenzel, O., Büchi, F.N., & Münch, B., Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part I: effect of compression and anisotropy of dry GDL, Electrochim. Acta, 2017, vol. 227, p. 419.
  17. 17. Holzer, L., Pecho, O., Schumacher, J., Marmet, P., Stenzel, O., Büchi, F.N., & Münch, B., Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part II: pressure-induced water injection and liquid permeability, Electrochim. Acta, 2017, vol. 241, p. 414.
  18. 18. Vetter, R. and Schumacher, J. O., Experimental parameter uncertainty in proton exchange membrane fuel cell modeling. Part II: Sensitivity analysis and importance ranking, J. Power Sources, 2019, vol. 439, p. 126529.
  19. 19. Vichard, L., Petrone, R., Harel, F., Ravey, A., Venet, P., & Hissel, D., Long term durability test of open-cathode fuel cell system under actual operating conditions, Energy Convers. Manag., 2020, vol. 212, p. 112813.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library