- PII
- 10.31857/S0424857024010115-1
- DOI
- 10.31857/S0424857024010115
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 60 / Issue number 1
- Pages
- 85-92
- Abstract
- Composite solid electrolytes based on n-methyl-n-butyl-piperidinium tetrafluoroborate [(CH3)(C4H9)C5H10N]BF4–A (where A is γ-Al2O3, SiO2) were synthesized and their thermal and electrically conductive properties have been studied. It was found that the conductivity of the [C10H22N]BF4–Al2O3 composites passes through a maximum at x~0.9 and reaches a value of 4.6·10-4 S/cm at 130оC for the 0.1[C10H22N]BF4–0.9Al2O3 composite. The absence of a thermal effect at the melting temperature of the ionic salt, which indicates a high ionic conductivity, indicates that at x ≥ 0.9, n-methyl-n-butyl-piperidinium tetrafluoroborate is in the amorphous state and ion transfer occurs along the ionic salt/oxide phase boundary. In the case of [C10H22N]BF4 – SiO2 composites, the effect of a heterogeneous dopant on ion transport is less significant and the conductivity is due to the ionic salt of the additive present in the pores.
- Keywords
- ионная проводимость композиционные твердые электролиты органические соли с пластической фазой тетрафторборат н-метил-н-бутил-пиперидиния
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 4
References
- 1. MacFarlane, D.R. and Forsyth, M., Plastic crystal electrolyte materials: new perspectives on solid state ionics, Adv. Mater., 2001, vol. 13, p. 957.
- 2. Wang, X., Kerr, R., Chen, F., Goujon, N., Pringle, J.M., Mecerreyes, D., Forsyth, M., and Howlett, P.C., Toward High-Energy-Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes, Adv. Mater., 2020, vol. 32, p. 1905219.
- 3. Timmermans, J., Plastic crystals: A historical review, J. Phys. Chem. Solids, 1961, vol. 18, p. 1.
- 4. Улихин, А.С., Уваров, Н.Ф. Ионная проводимость композиционных твердых электролитов (C4H9)4NBF4–Al2O3. Электрохимия. 2021. Т. 57. С. 608. [Ulihin, A.S. and Uvarov, N.F., Ionic conductivity of composite solid electrolyte (C4H9)4NBF4–Al2O3, Russ. J. Electrochem., 2021, vol. 57, p. 1015.]
- 5. Ulihin, A.S., Uvarov, N.F., Rabadanov, K.Sh., Gafurov, M.M., and Gerasimov, K.B., Thermal, structural and transport properties of composite solid electrolytes (1 – x)(C4H9)4NBF4–xAl2O3, Solid State Ionics, 2022, vol. 378, p. 115889.
- 6. Ulikhin, A.S., Uvarov, N.F., Kovalenko, K.A., and Fedin, V.P., Ionic conductivity of tetra-n-butylammonium tetrafluoroborate in the MIL-101(Cr) metal-organic framework, Microporous and Mesoporous Materials, 2022, vol. 332, p. 111710.
- 7. Алексеев, Д.В., Матейшина, Ю.Г., Уваров, Н.Ф. Влияние добавки наноалмазов на ионную проводимость органической соли (C2H5)3CH3NBF4. Электрохимия. 2022. Т.58. С. 394. [Alekseev, D.V., Mateyshina, Yu.G., and Uvarov, N.F., Effect of Nanodiamond Additives on the Ionic Conductivity of the (C2H5)3CH3NBF4 Organic Salt, Russ. J. Electrochem., 2022, vol. 58, p. 594.]
- 8. Ponomareva, V.G., Bagryantseva, I.N., Dormidonova, D., and Uvarov, N.F., Stabilization of the (C2H5)4NHSO4 High-Temperature Phase in New Silica-Based Nanocomposite Systems, Molecules, 2022, vol. 27(24), p. 8805.
- 9. Уваров, Н.Ф., Болдырев, В.В. Размерные эффекты в химии гетерогенных систем. Успехи химии. 2001. Т.70. С.307. [Uvarov, N.F. and Boldyrev, V.V., Size effects in chemistry of heterogeneous systems, Russ. Chem. Rev., 2001, vol. 70, p. 265.]
- 10. Uvarov, N.F., Vanek, P., Yuzyuk, Yu.I., Zelezny, V., Studnicka, B.B., Bokhonov, B.B., Dulepov, E., and Petzelt, J., Properties of rubidium nitrate in ion-conducting RbNO3-Al2O3 nanocomposites, Solid State Ionics, 1996, vol. 90, p. 201.
- 11. Lavrova, G.V., Ponomareva, V.G., and Uvarov, N.F., Nanocomposite ionic conductors in the system MeNO3–SiO2 (Me=Rb, Cs), Solid State Ionics, 2000, vol. 136–137, p. 1285.
- 12. Ponomareva, V.G., Uvarov, N.F., Lavrova, G.V., and Hairetdinov, E.F., Composite protonic solid electrolytes in the CsHSO4-SiO2 system, Solid State Ionics, 1996, vol. 90, p. 161.
- 13. Uvarov, N.F., Shastry, M.C.R., and Rao, K.J., Structure and ionic transport in aluminum oxide containing composites, Rev. Solid State Sci., 1990, vol. 4, p. 61.
- 14. Uvarov, N.F., Hairetdinov, E.F., Bokhonov, B.B., and Bratel, N.B., High ionic conductivity and unusual thermodynamic properties of silver iodide in AgI-Al2O3 nanocomposites, Solid State Ionics, 1996, vol. 86–88, p. 573.
- 15. Uvarov, N.F., Vanek, P., Savinov, M., Zelezny, V., Studnicka, J., and Petzelt, J., Percolation effect, thermodynamic properties of AgI and interface phases in AgI-Al2O3 composites, Solid State Ionics, 2000, vol. 127, p. 253.
- 16. Tadanaga, K., Imai, K., Tatsumisago, M., and Minami, N., J. Electrochem. Soc., 2000, vol. 147, p. 4061.
- 17. Ulihin, A.S., Uvarov, N.F., Mateyshina, Yu.G., Brezhneva, L.I., and Matvienko, A.A., Composite solid electrolytes LiClO4–Al2O3, Solid State Ionics, 2006, vol. 177, p. 2787.
- 18. Улихин, А.С., Уваров, Н.Ф. Электрохимические свойства композиционных твердых электролитов LiClO4-MgO. Электрохимия. 2009. Т. 45. С. 755. [Ulihin, A.S. and Uvarov, N.F., Electrochemical properties of composition solid electrolytes LiClO4-MgO, Russ. J. Electrochem., 2009, vol. 45, p.707.]
- 19. Улихин, А.С., Уваров, Н.Ф., Герасимов, К.Б., Искакова, А.А., Матейшина, Ю.Г. Физико-химические свойства композитов (CH3)2NH2Cl–Al2O3. Электрохимия. 2017. Т. 53. С. 936. [Ulikhin, A.S., Uvarov, N.F., Gerasimov, K.B., Iskakova, A.A., and Mateishina, Yu.G., Physicochemical properties of (CH3)2NH2Cl–Al2O3 composites, Russ. J. Electrochem., 2017, vol. 53, p. 834.]
- 20. Uvarov, N.F. and Vanek, P., Stabilization of New Phases in Ion-Conducting Nanocomposites, J. Mater. Synthesis and Processing, 2000, vol. 8, p. 319.