RAS Chemistry & Material ScienceЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

Study of oxygen transport of microtubular La0.5Sr0.5Fe1 – xNbxO3 – δ membranes

PII
10.31857/S0424857024010096-1
DOI
10.31857/S0424857024010096
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 1
Pages
73-78
Abstract
Perovskite-like oxides based on lanthanum-strontium ferrites are considered promising electrode materials for use in various types of fuel cells, and the strategy of modifying these materials by partial substitution of iron with highly charged ferroactive cations has proven to be an effective way to increase their chemical stability. In this paper, for the first time, the results of a study of the permeability of microtubular oxygen membranes based on La0.5Sr0.5Fe1 xNbxO3 – δ oxide are presented. The activation energy of oxide bulk diffusion (20±4 kJ/mol) was found.
Keywords
перовскит смешанная проводимость кислородная проницаемость кислородный обмен микротрубчатые мембраны
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Simner, S.P., Bonnett, J.F., Canfield, N.L., Meinhardt, K.D., Shelton, J.P., Sprenkle, V.L., and Stevenson, J.W., Development of lanthanum ferrite SOFC cathodes, J. Power Sources, 2003, vol. 113, no. 1, p. 1.
  2. 2. Simner, S.P., Bonnett, J.F., Canfield, N.L., Meinhardt, K.D., Sprenkle, V.L., & Stevenson, J.W., Optimized lanthanum ferrite-based cathodes for anode-supported SOFCs, Electrochem. and Solid-State Letters, 2002, vol. 5, no. 7, p. A173.
  3. 3. Plonczak, P., Gazda, M., Kusz, B., & Jasinski, P., Fabrication of solid oxide fuel cell supported on specially performed ferrite-based perovskite cathode, J. Power Sources, 2008, vol. 181, no. 1, p. 1.
  4. 4. ten Elshof, J.E., Bouwmeester, H.J., & Verweij, H., Oxygen transport through La1 – xSrxFeO3 – δ membranes. I. Permeation in air/He gradients, Solid State Ionics, 1995, vol. 81, no. 1–2, p. 97.
  5. 5. ten Elshof, J.E., Bouwmeester, H.J., & Verweij, H., Oxygen transport through La1 – xSrxFeO3 – δ membranes II. Permeation in air/CO, CO2 gradients, Solid State Ionics, 1996, vol. 89, no. 1–2, p. 81.
  6. 6. Murade, P.A., Sangawar, V.S., Chaudhari, G.N., Kapse, V.D., & Bajpeyee, A.U., Acetone gas-sensing performance of Sr-doped nanostructured LaFeO3 semiconductor prepared by citrate solgel route, Curr. Appl. Phys., 2011, vol. 11, no. 3, p. 451.
  7. 7. Backhaus-Ricoult, M., Adib, K., Work, K., Badding, M., Ketcham, T., Amati, M., & Gregoratti, L., In-situ scanning photoelectron microscopy study of operating (La, Sr) FeO3-based NOx-sensing surfaces, Solid State Ionics, 2012, vol. 225, p. 716.
  8. 8. Nalbandian, L., Evdou, A., & Zaspalis, V., La1 – xSrxMO3 (M = Mn, Fe) perovskites as materials for thermochemical hydrogen production in conventional and membrane reactors, Intern. J. Hydrogen Energy, 2009, vol. 34, no. 17, p. 7162.
  9. 9. Tan, X., Shi, L., Hao, G., Meng, B., & Liu, S., La0.7Sr0.3FeO3 – α perovskite hollow fiber membranes for oxygen permeation and methane conversion, Separation and Purification Technol., 2012, vol. 96, p. 89.
  10. 10. Patrakeev, M.V., Bahteeva, J.A., Mitberg, E.B., Leonidov, I.A., Kozhevnikov, V.L., & Poeppelmeier, K.R., Electron/hole and ion transport in La1 – xSrxFeO3 – δ, J. Solid State Chem., 2003, vol. 172.
  11. 11. Hou, Y., Wang, L., Bian, L., Zhang, Q., Chen, L., & Chou, K.C., Effect of high-valence elements doping at B site of La0.5Sr0.5FeO3 – δ, Ceram. International, 2022, vol. 48, no. 3, p. 4223.
  12. 12. Bayraktar, D., Diethelm, S., Graule, T., & Holtappels, P., Properties of B-site substituted La0.5Sr0.5FeO3 – δ perovskites for application in oxygen separation membranes, J. Electroceram., 2009, vol. 22, no. 1–3, Special Issue, p. 55.
  13. 13. Ecker, S.I., Dornseiffer, J., Werner, J., Schlenz, H., Sohn, Y.J., Sauerwein, F.S., Baumann, S., Bouwmeester, H.J.M., Guillon, O., Weirich, T.E., and Meulenberg, W.A., Novel low-temperature lean NOx storage materials based on La0.5Sr0.5Fe1 – xMxO3 – δ/Al2O3 infiltration composites (M = Ti, Zr, Nb), Appl. catalysis B: environmental, 2021, vol. 286, p. 119919.
  14. 14. Bian, L., Duan, C., Wang, L., Zhu, L., O’Hayre, R., & Chou, K.C., Electrochemical performance and stability of La0.5Sr0.5Fe0.9Nb0.1O3 – δ symmetric electrode for solid oxide fuel cells, J. Power Sources, 2018, vol. 399, p. 398.
  15. 15. Wang, S., Wei, B., & Lü, Z., Electrochemical performance and distribution of relaxation times analysis of tungsten stabilized La0.5Sr0.5Fe0.9W0.1O3 – δ electrode for symmetric solid oxide fuel cells, Intern. J. Hydrogen Energy, 2021, vol. 46, no. 58, p. 30101.
  16. 16. Chen, X., Hao, S., Lu, T., Li, M., Han, L., Dong, P., Xiao, J., Zeng, X., and Zhang, Y., A vanadium-doped La0.5Sr0.5FeO3 – δ perovskite as a promising anode of direct carbon solid oxide fuel cells for brown coal utilization, J. Alloys and Compounds, 2022, vol. 928, p. 167212.
  17. 17. Liu, F., Zhang, L., Huang, G., Niu, B., Li, X., Wang, L., Zhao, J., and Jin, Y., High performance ferritebased anode La0.5Sr0.5Fe0.9Mo0.1O3 – δ for intermediatetemperature solid oxide fuel cell, Electrochim. Acta, 2017, vol. 255, p. 118.
  18. 18. Chizhik, S.A., Popov, M.P., Kovalev, I.V., Bychkov, S.F., and Nemudry, A.P., Comparison of stationary and transient kinetic methods in determining the rate of surface exchange reaction between molecular oxygen and MIEC perovskite, Chem. Engineering J., 2022, vol. 450, p. 137970.
  19. 19. Dann, S.E., Currie, D.B., Weller, M.T., Thomas, M.F., and Al-Rawwas, A.D., The effect of oxygen stoichiometry on phase relations and structure in the system La1 – xSrxFeO3 – δ (0≤ x≤ 1, 0≤ δ≤ 0.5), J. Solid State Chem., 1994, vol. 109, no. 1, p. 134.
  20. 20. Shubnikova, E.V., Popov, M.P., Bychkov, S.F., Chizhik, S.A., and Nemudry, A.P., The modeling of oxygen transport in MIEC oxide hollow fiber membranes, Chem. Engineering J., 2019, vol. 372, p. 251.
  21. 21. Bouwmeester, H.J. and Gellings, P.J., The CRC handbook of solid state electrochemistry, CRC Press, 1997, p. 481–553.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library