RAS Chemistry & Material ScienceЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

OXYGEN-ION COMPOSITES MWO4-SiO2 (M – Sr, Ba)

PII
10.31857/S0424857023080066-1
DOI
10.31857/S0424857023080066
Publication type
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 8
Pages
448-455
Abstract
Composite materials (1-f)SrWO4–fSiO2 and (1–f)BaWO4–fSiO2, where f is the volume fraction of the dispersed SiO2 additive, were prepared by the solid-phase method. The resulting composites were studied by XPA, TG-DSC, SEM-EDA. The electrical conductivity of the composites was measured by the electrochemical impedance method as a function of temperature, oxygen partial pressure in the gas phase, and composition. To estimate the contribution of ionic conductivity, the sum of ionic transfer numbers was measured by the EMF method. It has been shown that the addition of 20–25 vol % nano-SiO2 to low-conductivity oxygen-ion conductors SrWO4 and BaWO4 leads to an increase in the ionic conductivity of composites based on them by two orders of magnitude and by 12 times, respectively. The increase in conductivity in the systems under study is explained by the additional contribution of interfacial boundaries formed between the MeWO4 matrix and dispersoid nanoparticles. The mixing rule [1] was used to calculate the electrical conductivity of (1-f)SrWO4–fSiO2 and (1-f)BaWO4–fSiO2 composites depending on the SiO2 content. The calculated concentration dependences of the conductivity obtained are in satisfactory agreement with the experimental results.
Keywords
композиты кислородно-ионные проводники гетерогенное допирование вольфраматы
Date of publication
01.08.2023
Year of publication
2023
Number of purchasers
0
Views
40

References

  1. 1. Уваров, Н.Ф. Композиционные твердые электролиты. Новосибирск: Изд-во СО РАН, 2008. 258 с. [Uvarov, N.F., Composite solid electrolytes (in Russian), Novosibirsk: ISSC SB RAS Publ., 2008. 259 p.]
  2. 2. Ishihara, T., Perovskite oxide for solid oxide fuel cells, L.: Springer, 2009, 302 p.
  3. 3. Maier, J., Ionic conduction in space charge regions, Prog. Solid State Chem., 1995, vol. 23, p. 171. https://doi.org/10.1016/0079-6786 (95)00004-E
  4. 4. Gregori, G., Merkle, R., and Maier, J., Prog. Mater. Sci. 2017, vol. 89, p. 252. https://doi.org/10.1016/j.pmatsci.2017.04.009
  5. 5. Agrawal, R.C. and Gupta, R.K., Superionic solid: composite electrolyte phase – an overview, J. Mater. Sci., 1999, vol. 34, p. 1131. https://doi.org/10.1023/A:1004598902146
  6. 6. Uvarov, N.F., Composite solid electrolytes: recent advances and design strategies, J. Solid State Electrochem., 2011, vol. 15, p. 367. https://doi.org/10.1007/s10008-008-0739-4
  7. 7. Yaroslavtsev, A.B., Composite materials with ionic conductivity: from inorganic composites to hybrid membranes, Russ. Chem. Rev., 2009, vol. 78, № 11, p. 1013.
  8. 8. Нейман, А.Я., Пестерева, Н.Н., Чжоу, Ю., Нечаев, Д.О., Котенева, Е.А., Ванек, К., Хиггинс, Б., Волкова, Н.А., Корчуганова, И.Г. Электрохимия. 2013. Т. 49. С. 999. [Neiman, A.Ya., Pestereva, N.N., Zhou, Y., Nechayev, D.O., Koteneva, E.A., Vanec, K., Higgins, B., Volkova, N.A., and Korchuganova, I.G., Russ. J. Electrochem., 2013, vol. 49, p. 895.]
  9. 9. Нейман, А.Я., Пестерева, Н.Н., Шарафутдинов, А.Р. и др., Проводимость и числа переноса метакомпозитов MeWO4–WO3 (Me – Ca, Sr, Ba). Электрохимия. 2005. Т. 41. С. 680. [Neiman, A.Ya., Pestereva, N.N., Sharafutdinov, A.R., et al., Conduction and transport numbers in metacomposites MeWO4–WO3 (Me – Ca, Sr, Ba), Russ. J. Electrochem., 2005, vol. 41. p. 598.]
  10. 10. Пестерева, Н.Н., Жукова, А.Ю., Нейман, А.Я. Числа переноса носителей и ионная проводимость эвтектических метакомпозитов {MеWO4·хWO3} (Mе – Sr, Ba). Электрохимия. 2007. Т. 43. С. 1379. [Pestereva, N.N., Zhukova, A.Yu., and Neiman, A.Ya., Transport numbers and ionic conduction of eutectic metacomposites {MeWO4·xWO3} (Me – Sr, Ba), Russ. J. Electrochem., 2007, vol. 43, p. 1305.]
  11. 11. Партин, Г.С., Пестерева, Н.Н., Корона, Д.В., Нейман, А.Я. Влияние состава композитов {(100 – ‒ x)CaWO4–xV2O5} и {(100 – x)LaVO4–xV2O5} на их электропроводность. Электрохимия. 2015. Т. 51. С. 1071. [Partin, G.S., Pestereva, N.N., Korona, D.V., and Neiman, A.Y., Effect of composition of {(100 – ‒ x)CaWO4–xV2O5} and {(100 – x)LaVO4–xV2O5} composites on their conductivity Russ. J. Electrochem., 2015, vol. 51, p. 945.]
  12. 12. Knosinger, H. and Taglauer, E., Toward supported odxide catalysts via solid-solid wetting, Catalysis, 1993, vol. 10, p. 1.
  13. 13. Sawada, S., Thermal and electrical properties of tungsten oxide (WO3), J. Phys. Soc. Japan, 1956, vol. 11, p. 1237.
  14. 14. Kofstad, P., Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. N.Y.: Wiley-Interscience, 1972. p. 382.
  15. 15. Guseva, A., Pestereva, N., Otcheskikh, D., and Kuznetsov, D., Electrical properties of CaWO4–SiO2 composites, Solid State Ionics, 2021. V. 364. P. 115626. https://doi.org/10.1016/j.ssi.2021.115626
  16. 16. Technical Bulletin Fine Particles N 11, Basic Characteristics of Aerosil Fumed Silica, 4th ed. Essen: Evonik, 2003.
  17. 17. Чеботин, В.Н., Перфильев, М.В. Электрохимия твердых электролитов, М.: Химия, 1978. 312 с. [Chebotin, V.N. and Perfilev, M.V., Electrochem. solid electrolytes (in Russian), Moscow: Khimiya, 1978. 312 p.]
  18. 18. Uvarov, N.F., Estimation of composites conductivity using a general mixing rule, Solid State Ionics, 2000, vol. 136–137, p. 1267.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library