- Код статьи
- S3034618525070012-1
- DOI
- 10.7868/S3034618525070012
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 61 / Номер выпуска 7
- Страницы
- 313-327
- Аннотация
- Проведено моделирование процесса электрохимической размерной обработки (ЭХРО) внешней поверхности вращающейся цилиндрической детали цилиндрическим катодом с частично изолированной поверхностью. Показано, что частичная изоляция поверхности электрода-инструмента (ЭИ) позволяет увеличить локализацию процесса растворения металла на нужном участке обрабатываемой детали. Степень локализации тем больше, чем меньше неизолированная часть ЭИ и минимальный межэлектродный зазор, при котором происходит обработка. Частичная изоляция поверхности ЭИ приводит к некоторому снижению производительности ЭХРО, но краевой эффект на границе изолированной и неизолированной частей ЭИ частично компенсирует этот недостаток.
- Ключевые слова
- электрохимическая размерная обработка внешняя цилиндрическая поверхность частично изолированный катод численное моделирование метод граничных элементов
- Дата публикации
- 13.12.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 34
Библиография
- 1. Electrochemical machining, Eds. de Barr, A.E. and Oliver, D.A. London: Macdonald, 1968.
- 2. Wilson, J.F. Practice and Theory of Electrochemical Machining, New York: Wiley, 1971.
- 3. Румянцев, Е.М., Давыдов, А.Д. Технология электрохимической обработки металлов, Москва: Высшая школа, 1984. @@Rumyantsev, E. and Davydov, A., Electrochemical Machining of Metals, Moscow: Mir, 1989.
- 4. Шманев, В.А., Филимошин, В.Г., Каримов, А.Х., Петров, Б.И., Проничев, Н.Д. Технология электрохимической обработки деталей в авиадвигателестроении. М.: Машиностроение, 1986. @@Shmanev, V.A., Filimoshin, V.G., Karimov, A. Kh., Petrov, B.I., and Pronichev, N.D., Technology of Electrochemical Machining of Parts in Aircraft Engine Manufacturing (in Russian), Moscow: Mashinostroenie, 1986.
- 5. Давыдов, А.Д., Волгин, В.М., Любимов, В.В. Электрохимическая размерная обработка металлов: процесс формообразования. Электрохимия. 2004. Т. 40. С. 1438. @@Davydov, A.D., Volgin, V.M., and Lyubimov, V.V., Electrochemical machining of metals: Fundamentals of electrochemical shaping, Russ. J. Electrochem., 2004, vol. 40, p. 1230. https://doi.org/10.1007/s11175-005-0045-8
- 6. Житников, В.П., Зайцев, А.Н. Импульсная электрохимическая размерная обработка. М.: Машиностроение, 2008. @@Zhitnikov, V.P. and Zaitsev, A.N., Pulsed Electrochemical Machining (in Russian), Moscow: Mashinostroenie, 2008.
- 7. Painuly, M., Singh, R.P., and Trehan, R., Electrochemical machining and allied processes: a comprehensive review, J. Solid State Electrochem., 2023, vol. 27, p. 3189. https://doi.org/10.1007/s10008-023-05610-x
- 8. Ge, Y.C., Zhu, Z., Ma, Z., and Wang, D., Large allowance electrochemical turning of revolving parts using a universal cylindrical electrode, J. Mater. Process Tech., 2018, vol. 258, p. 89. https://doi.org/10.1016/j.jmatprotec.2018.03.013
- 9. Wang, D., Zhu, Z., Wang, H., and Zhu, D., Convex shaping process simulation during counter-rotating electrochemical machining by using the finite element method, Chinese J. Aeronautics, 2016, vol. 29, no. 2, p. 534. http://dx.doi.org/10.1016/j.cja.2015.06.022
- 10. Wang, D., Zhu, Z.W., He, B., Zhu, D., and Fang, Z., Counter-rotating electrochemical machining of a combustor casing part using a frustum cone-like cathode tool, J. Manuf. Process, 2018, vol. 35, p. 614. https://doi.org/10.1016/j.jmapro.2018.09.016
- 11. Cao, W., Wang, D., and Zhu, D., Modeling and experimental validation of interelectrode gap in counter-rotating electrochemical machining, Int. J. Mech. Sci., 2020, vol. 187, p. 105920. https://doi.org/10.1016/j.ijmecsci.2020.105920
- 12. Cao, W., Wang, D., Ren, Z., and Zhu, D., Evolution of convex structure during counter-rotating electrochemical machining based on kinematic modeling, Chinese J. Aeronautics, 2021, vol. 34, p. 39. https://doi.org/10.1016/j.cja.2020.09.003
- 13. Wang, D., Li, J., He, B., and Zhu, D., Analysis and control of inter-electrode gap during leveling process in counter-rotating electrochemical machining, Chinese J. Aeronautics, 2019, vol. 32, p. 2557. https://doi.org/10.1016/j.cja.2019.08.022
- 14. Cao, W., Wang, D., Cui, G., and Le, H., Analysis of the roundness error elimination in counter-rotating electrochemical machining, J. Manuf. Process, 2022, vol. 76, p. 57. https://doi.org/10.1016/j.jmapro.2022.02.015
- 15. Wang, D., Zhu, Z., Zhu, D., He, B., and Ge, Y., Reduction of stray current in counter-rotating electrochemical machining by using a flexible auxiliary electrode mechanism, J. Mater. Process Technol., 2017, vol. 239, p. 66. https://doi.org/10.1016/j.jmatprotec.2016.08.008
- 16. Dawes, C.L., Capacitance and potential gradients of eccentric cylindrical condensers, Physics, 1933, vol. 4, no. 2, p. 81.
- 17. Weber, E., Electromagnetic Fields: Theory and Applications, New York: Wiley, 1950, vol. 1.
- 18. Kasper, C., The theory of the potential and the technical practice of electrodeposition: IV. The flow between and to circular cylinders, Trans. Electrochem. Soc., 1940, vol. 78, no. 1, p. 147.
- 19. Morales, M., Diaz, R.A., and Herrera, W.J., Solutions of Laplace’s equation with simple boundary conditions, and their applications for capacitors with multiple symmetries, J. Electrostat., 2015, vol. 78, p. 31. https://doi.org/10.1016/j.elstat.2015.09.006
- 20. Deconinck, J., Current Distributions and Electrode Shape Changes in Electrochemical Systems, in: Lecture Notes in Engineering, vol. 75. Berlin: Springer, 1992.
- 21. Kozak, J., Computer simulation system for electrochemical shaping, J. Mater. Process Technol., 2001, vol. 109, no. 3, p. 354. https://doi.org/10.1016/S0924-0136 (00)00825-6
- 22. Pattavanitch, J., Hinduja, S., and Atkinson, J., Modelling of the electrochemical machining process by the boundary element method, CIRP Annals, 2010, vol. 59, no. 1, p. 243. https://doi.org/10.1016/j.cirp.2010.03.07223
- 23. Volgin, V.M., Kabanova, T.B., and Davydov, A.D., Modeling of through-mask electrochemical micromachining, J. Appl. Electrochem., 2015, vol. 45, p. 679. https://doi.org/10.1007/s10800-015-0843-y
- 24. Volgin, V.M., Lyubimov, V.V., and Davydov, A.D., Modeling and numerical simulation of electrochemical micromachining, Chem. Eng. Sci., 2016, vol. 140, p. 252. https://doi.org/10.1016/j.ces.2015.09.034
- 25. Volgin, V.M., Gnidina, I.V., Sidorov, V.N., Kabanova, T.B., and Davydov, A.D., Modeling of electrochemical micromachining of cylindrical hole surface by eccentric cathode, J. Solid State Electrochem., 2024, vol. 28, p.1475. DOI: 10.1007/s10008-023-05661-0
- 26. Britz, D. and Strutwolf, J., Digital Simulation in Electrochemistry, Berlin: Springer. 2005.
- 27. Babur, O., Smilauer, V., Verhoeff, T., van den Brand, M., A survey of open source multiphysics frameworks in engineering, Proc. Computer Science, 2015, vol. 51, p. 1088. https://doi.org/10.1016/j.procs.2015.05.273
- 28. Betcke, T. and Scroggs, M.W., Bempp-cl: A fast Python based just-in-time compiling boundary element library, J. Open Source Software, 2021, vol. 6, no. 59, p. 2879. https://doi.org/10.21105/joss.02879
- 29. Nishimura, N., Fast multipole accelerated boundary integral equation methods, Appl. Mech. Rev., 2002, vol. 55, no. 4, p. 299. https://doi.org/10.1115/1.1482087
- 30. Dongarra, J. and Sullivan, F., Guest editors introduction to the top 10 algorithms, Comput. Sci. Eng., 2000, vol. 2, p. 22. https://doi.org/10.1109/MCISE.2000.814652
- 31. Liu, Y.J. and Nishimura, N., The fast multipole boundary element method for potential problems: a tutorial, Eng. Anal. Bound. Elem., 2006, vol. 30, no. 5, p. 371. https://doi.org/10.1016/j.enganabound.2005.11.006
- 32. Liu, Y., Fast Multipole Boundary Element Method: Theory and Applications in Engineering, Cambridge: Cambridge University, 2009.