RAS Chemistry & Material ScienceЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

ELECTROCHEMICAL BEHAVIOR OF COMPLEXES OF COBALT AND ZINC METHOXYPHENOXYPHTHALOCYANINES

PII
S3034618525060024-1
DOI
10.7868/S3034618525060024
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 6
Pages
287-298
Abstract
The electrochemical behavior of a number of isomers of methoxyphenoxy derivatives of cobalt phthalocyanine {CoPc[4-(x-OCHOPh)] and CoPc[3-(x-OCHOPh)], where x = 4/, 3/, or 2} in an aqueous alkaline solution and ZnPc[4-(x-OCHOPh)], where x = 4/, 3/, or 2/ in a CHCl medium was studied for the first time using cyclic voltammetry. A comparative analysis of the electrochemical behavior and changes in the electrocatalytic activity of cobalt phthalocyanines in the reaction of molecular oxygen electroreduction depending on the functional substitution in the macrocycle molecule is given. It is shown that for the compounds (CoPc[4-(x-OCHOPh)] and CoPc[3-(x-OCHOPh)]) the processes of oxidation (Co ⇔ Co) and reduction of the central metal ion (Co ⇔ Co) are recorded, as well as two successive one-electron stages of electroreduction of the phthalocyanine ligand. It is established that the studied cobaltphthalocyanine derivatives are quite effective systems for the process of electroreduction of molecular oxygen. For ZnPc[4-(x-OCHOPh)], where x = 4/, 3/or 2/, the formation of polyphthalocyanine films was detected in the process of electrooxidation of monomers in dichloromethane.
Keywords
фталоцианины комплексы щелочной электролит электрокатализ молекулярный кислород
Date of publication
11.01.2026
Year of publication
2026
Number of purchasers
0
Views
45

References

  1. 1. Шапошников, Г.П., Кулинич, В.П., Майзлиш, В.Е. Модифицированные фталоцианины и их структурные аналоги / под ред. О.И. Койфмана. М.: Красанд, 2012. 480 с. @@Shaposhnikov, G.P., Kulinich, V.P., and Maizlish, V.E., Modifitsirovannye ftalotsianini i ih strukturnye analogi (in Russian)/ Ed. by O.I. Koifman. M.: Krasand, 2012. 480 p.
  2. 2. Березин, Б.Д. Координационные соединения порфиринов и фталоцианина, М.: Наука, 1978. 280 с. @@Berezin, B.D., Koordinatsionnye soedineniya porfirinov and ftalotsianina (in Russian). Moscow: Nauka, 1978. 280 p.
  3. 3. Hamad, O.A., Kareem, R.O., and Omer, P.K., Properties, Characterization, and Application of Phthalocyanine and Metal Phthalocyanine, J. Chem. Rev., 2024, vol. 6, no. 1, p. 39.
  4. 4. Данилова, Е.А., Галанин, Н.Е., Исляйкин, М.К., Майзлиш, В.Е., Березина, Г.Р., Румянцева, Т.А., Суворова, Ю.В., Знойко, С.А., Кустова, Т.В. Достижения в области химии макрогетероциклических соединений на кафедре технологии тонкого органического синтеза. Изв. вузов. Химия и хим. технология. 2023. Т. 66. Вып. 7. С. 111. @@Danilova, E.A., Galanin, N.E., Islyaikin, M.K., Maizlish, V.E., Berezina, G.R., Rumyantseva, T.A., Suvorova, Yu.V., Znoiko, S.A., and Kustova, T.V., Achievements in the field of chemistry of macroheterocyclic compounds at the depariment of technology of fine organic synthesis, Russ. lzv. Vssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2023, vol. 66, no. 7, p. 111.
  5. 5. Gao, Y., Zhang, R., Xiang, Z., Yuan, B., Cui, T., Gao, Y., and Zhang, Z., Theoretical insights into photocatalytic CO2 reduction on Palladium phthalocyanine, Chem. Phys. Lett., 2022, vol. 803, p. 139812.
  6. 6. Li, D., Cai, S., Wang, P., Cheng, H., Cheng, B., Zhang, Y., and Liu, G., Innovative design strategies advance biomedical applications of phthalocyanines, Adv. Healthcare Mater., 2023, vol. 12, no. 22, p. 2300263.
  7. 7. Santos, K.L.M., Barros, R.M., da Silva Lima, D.P., Nunes, A.M.A., Sato, M.R., Faccio, R., and Oshiro-Junior, J.A., Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: A mini-review, Photodiagnosis and Photodynamic Therapy, 2020, vol. 32, p. 102032.
  8. 8. Cranston, R.R. and Lessard, B.H., Metal phthalocyanines: Thin-film formation, microstructure, and physical properties, RSC Аdvances, 2021, vol. 11, no. 35, p. 21716.
  9. 9. Смирнова, А.И., Кулев, В.А., Рассолова, А.Е., Майзлиш, В.Е., Холодков, И.В., Яблонский, С.В., Тихомирова, Т.В., Александрийский, В.В., Абрамов, И.Г., Глуховской, Е.Г., Усольева, Н.В. Тетра‑4-(4’-метоксифенокси)-фталоцианин меди: синтез, метоморфизм, спектральные и фотофизические свойства тонких пленок. Жидкие кристаллы и их практ. использование. 2022. Т. 22. № 4. C. 37. @@Smimova, A.I., Kulev, V.A., Rassolova, A.E., Maizlish, V.E., Kholodkov, I.V., Yablonskii, S.V., Tikhomirova, T.V., Aleksandriiskii, V.V., Abramov, I.G., Glukhovskoy, E.G., and Usol’tseva, N.V., Tetra‑4-(4’-methoxyphenoxy)-phthalocyanine copper complex: synthesis, mesomorphism, spectral and photophysical properties of thin films, Russ. Liq. Cryst. and their Appl., 2022, vol. 22, no. 4, p. 37.
  10. 10. Berezina, N.M., Bazanov, M.I., and Maizlish, V.E., Electrochemical Properties of Tetrasubstituted Cobalt Phthalocyanines with Fragments of Benzoic Acid, Russ. J. Electrochem., 2018, vol. 54, no. 11, p. 873.
  11. 11. Kumar, A., Vashistha, V.K., and Das, D.K., Recent development on metal phthalocyanines based materials for energy conversion and storage applications, Coordinat. Chem. Rev., 2020, vol. 431(2017):213678.
  12. 12. Monama, G.R., Modibane, K.D., Ramohlola, K.E., Molapo, K.M., Hato, M.J., Makhafola, M.D., Mashao, G., Mdluli, S.B., Iwuoha, E.I., et al., Copper (II) phthalocyanine/metal organic framework electrocatalyst for hydrogen evolution reaction application, Intern. J. Hydrogen Energy, 2019, vol. 44, no. 34, p. 18891.
  13. 13. Yang, S., Yu, Y., Gao, X., Zhang, Zh., and Wang, F., Recent advances in electrocatalysis with phthalocyanines, Chem. Soc. Rev., 2021, vol. 50, no. 23, p. 12985.
  14. 14. Майзлиш, В.Е. Каталитические свойства сульфои карбоксифталоцианинов / отв. ред. д-р хим. наук, проф. О.А. Голубчиков. Успехи химии порфиринов. Т. 4. СПб.: НИИ химии СПбГУ, 2004. Гл. 16. С. 327–355. @@Maizlish, V.E., Catalytic properties of sulfoand carboxyphthalocyanines / ed. by Dr. of Chemical Sciences, Prof. O.A. Golubchikov, Advances in Porphyrin Chemistry, vol. 4, St. Petersburg: Research Institute of Chemistry, St. Petersburg State University, 2004, chapter 16, p. 327–355.
  15. 15. Величко, А.В., Майзлиш, В.Е., Шапошников, Г.П., Смирнов, Р.П. Металлофталоцианины – гетерогенные катализаторы восстановления оксидов азота аммиаком. Изв. вузов. Химия и хим. технология. 1993. Т. 36. Вып. 2. С. 47. @@Velichko, A.V., Maizlish, V.E., Shaposhnikov, G.P., and Smirnov, R.P., Metallophthalocyanines – heterogeneous catalysts for the reduction of nitrogen oxides with ammonia, Russ. lzv. Vssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 1993, vol. 36, issue 2, p. 47.
  16. 16. Hiromu, Nakamura, Kouki, Sugiyama, Kazuchika, Ohta, and Mikio, Yasutake, Phthalocyanine-based discotic liquid crystals switching from a molten alkyl chain type to a flying-seed-like type, J. Mater. Chem. C., 2017, vol. 5, p. 7297.
  17. 17. Miho, Yoshioka, Kazuchika, Ohta, and Mikio, Yasutake, Flying-seed-like liquid crystals. Part 4:† a novel series of bulky substituents inducing mesomorphism instead of using long alkyl chains, RSC Adv., 2015, vol. 5, p. 13828.
  18. 18. Wataraia, A., Ohta, K., and Yasutake, M., Flying-seed-like mesogens 6†: Synthesis and mesomorphism of phthalocyanine derivatives substituted by pentafluorosulfanylphenoxy group, J. Porphyrins and Phthalocyanines, 2016, vol. 20, p. 822.
  19. 19. Базанов, М.И., Филимонов, Д.А., Волков, А.В., Койфман, О.И. Макрогетероциклические соединения: Электрохимия, электрокатализ, термохимия. М.: Ленанд, 2016. 320 с. @@Bazanov, M.I., Filimonov, D.A., Volkov, A.V., and Koyfman, O.I., Makrogeretsiklicheskiye soyedineniya: Elektrokhimiya, elektrokataliz, termokhimiya. Moscow: Lenand, 2016, 320 p.
  20. 20. Тесакова, М.В., Носков, А.В., Базанов, М.И., Березина, Н.М., Парфенюк, В И. Кинетические параметры процесса электровосстановления кислорода на углеграфитовом электроде, активированном производными тетрафенилпорфина. Журн. физ. химии. 2012. Т. 86. № 1. С. 13. @@Tesakova, M.V., Noskov, A.V., Parfenyuk, V.I., Bazanov, M.I., and Berezina, N.M., Kinetic parameters of the electroreduction of oxygen on a graphitized carbon electrode activated by tetrakis(4-methoxyphenyl)porphyrin and its cobalt complexes, Russ. J. physical chemistry A, 2012, vol. 86, iss. 1, p. 9.
  21. 21. Erzunov, Dmitry, Rassolova, Anastasia, Botnar, Anna, Tonkova, Svetlana, Rumyantsev, Roman, Maizlish, Vladimir, Aleksandriskii, Viktor, and Vashurin, Arthur, The influence of methoxy-group position on thermal stability and properties of novel isomeric 4-[(methoxy)phenoxy] phthalonitriles and phthalocyanine complexes based on them, Dyes and Pigments, 2023, vol. 219, p. 111600.
  22. 22. Do, N.M., Berezina, N.M., Bazanov, M.I., Gyseinov, S.S., Berezin, M.B., and Koifman, O.I., Electrochemical behavior of a number of bispyridyl-substituted porphyrins and their electrocatalytic activity in molecular oxygen reduction reaction, J. Porphyrins and Phthalocyanines, 2016, vol. 20, no. 5, p. 615.
  23. 23. Davis, R.E., Horvath, G.L., and Tobias, C.W., The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions, Electrochim. Acta, 1967, vol. 12, p. 287.
  24. 24. Майрановский, В.Г. Электрохимия порфиринов, Порфирины: спектроскопия, электрохимия, применение / под ред. Н.С. Ениколопяна. М.: Наука, 1987. С. 127. @@Mayranovskiy, V.G., Elektrokhimiya porfirinov, Porfiriny: spektroskopiya, elektrokhimiya, primeneniye / Ed. N.S. Yenikolopyan. Moscow: Nauka, 1987, p. 127.
  25. 25. Beck, F., The redox mechanism of the chelate-catalysed oxygen cathode, J. Appl. Electrochem., 1977, no. 7, p. 239.
  26. 26. Базанов, М.И., Петров, А.В., Жутаева, Г.В., Турчанинова, И.В., Андриевски, Г., Евсеев, А.А. Оценка электрокаталитической активности макрогетероциклических комплексов в реакции электровосстановления молекулярного кислорода с использованием метода циклической вольтамперометрии. Электрохимия. 2004. Т. 40. C. 1396. @@Bazanov, M.I., Petrov, A.V., Zhutaeva, G.V., Turchaninova, I.V., Andrievski, G., and Evseev, A.А., Electrocatalytic activity of macroheterocyclic complexes in the molecular oxygen electroreduction: A cyclic voltammetry estimate, Russ. J. Electrochem., 2004, vol. 40, p. 1198.
  27. 27. Kuzmin, S.M., Chulovskaya, S.A., Tesakova, M.V., Semeikin, A.S., and Parfenyuk, V.I., Solvent and electrode influence on electrochemical forming of poly-Fe(III)-aminophenylporphyrin films, J. Porphyrins Phthalocyanines, 2017, vol. 21, p. 555.
  28. 28. Tesakova, M.V., Semeikin, A.S, and Parfenyuk, V.I., Electroconductive films based on amino-substituted tetraphenylporphyrins and their metal copper complexes, J. Porphyrins Phthalocyanines, 2016, vol. 20, p. 793.
  29. 29. Тесакова, М.В., Парфенюк, В.И. Влияние природы мономера на процессы электрополимеризации и физико-химические свойства пленок на основе гидроксифенилпорфиринов. Перспективные материалы. 2021. № 3. С. 30. @@Tesakova, M.V. and Parfenyuk, V.I., Influence of the nature of monomer on electropolymerization processes and physical and chemical properties of films based on hydroxy-substituted tetraphenylporphyrins, Inorganic Materials: Applied Research, 2021, vol. 12, no. 5, p. 1294.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library