ОХНМЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

БАРЬЕРНЫЕ СЛОИ НА ОСНОВЕ ТУГОПЛАВКИХ МЕТАЛЛОВ В КОНТАКТАХ ВЫСОКОТЕМПЕРАТУРНЫХ ТЕРМОЭЛЕМЕНТОВ

Код статьи
S3034618525020047-1
DOI
10.7868/S3034618525020047
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 61 / Номер выпуска 2
Страницы
161-170
Аннотация
Предложен электрохимический способ формирования контактов к высокотемпературным термоэлементам с барьерными слоями на основе сплавов тугоплавких металлов. Контакты предназначены для термоэлементов с рабочими температурами до 900 К. Получены и исследованы барьерные слои на основе сплавов: Ni-Mo; Co-Mo; Co-Mo и Ni-W, которые имели удельное сопротивление не более 15.3*10-8 Ом м, а удельное контактное сопротивление не более 1.5*10-9 Ом м2. Лучшие результаты получены для барьерных слоев на основе сплава Ni-Mo с содержанием Mo 36.5 мас.%. В качестве коммутационного слоя в контактах использовали пленки Ag, полученные электрохимическим осаждением. Установлено, что контакты являются термостабильными при предельных рабочих температурах термоэлементов и обладают адгезионной прочностью не менее 10.3 МПа.
Ключевые слова
термоэлементы контакты барьерные слои тугоплавкие металлы электрохимическое осаждение
Дата публикации
17.02.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
53

Библиография

  1. 1. Jaldurgam, F. F., Ahmad, Z., and Touati, F., Synthesis and performance of large-scale cost-effective environment-friendly nanostructured thermoelectric materials, Nanomaterials, 2021, vol. 11, no. 5, ID1091, p. 1.
  2. 2. Liu, Z. and Mori, T., Nanostructured bulk thermoelectric materials for energy harvesting, in System-Materials Nanoarchitectonics, Wakayama, Y. and Ariga, K. (eds), Tokyo: Springer, 2022, p. 199-231. https://doi.org/10.1007/978-4-431-56912-1_13
  3. 3. Okhay, O. and Tkach, A., Metal Oxide Based Thermoelectric Materials, In Optical Properties of Metal Oxide Nanostructures, Kumar, V., Ayoub, I., Sharma, V., Swart, H.C. Eds, Singapore: Springer 2023, vol. 26, p. 399-430. https://doi.org/10.1007/978-981-99-5640-1_13
  4. 4. Zhu, L., Li, H., Chen, S., Tian, X., Kang, X., Jiang, X., and Qiu, S., Optimization analysis of a segmented thermoelectric generator based on genetic algorithm, Renewable Energy, 2020, vol. 156, p. 710. https://doi.org/10.1016/j.renene.2020.04.120
  5. 5. Штерн, М.Ю. Многосекционные термоэлементы, преимущества и проблемы их создания. Физика и техника полупроводников. 2021. Т. 55. № 12. С. 1105. DOI: 10.21883/FTP.2021.12.51690.02.
  6. 6. Ouyang, Z. and Li, D., Design of segmented high-performance thermoelectric generators with cost in consideration, Appl. Energy, 2018, vol. 221, p. 112. https://doi.org/10.1016/j.apenergy.2018.03.106
  7. 7. Zhu, Y., Newbrook, D. W., Dai, P., Liu, J., de Groot, C. K., and Huang, R., Segmented thermoelectric generator modelling and optimization using artificial neural networks by iterative training, Energy and AI, 2023, vol. 12, ID100225. https://doi.org/10.1016/j.egyai.2022.100225
  8. 8. Shtern, M., Rogachev, M., Shtern, Y., Gromov, D., Kozlov, A., and Karavaev, I., Thin-film contact systems for thermocouples operating in a wide temperature range, J. Alloys and Compounds, 2021, vol. 852, p. 156889.
  9. 9. Zhu, L., Sun, D., Li, X., Liu, W., Huang, J., Liang, C., & Hu, X., Electroless plating of iron-group metals and electrochemical comparison for thermoelectric contacts, Solid State Sciences, 2024, vol. 154, p. 107613(1)-107613(7).
  10. 10. Громов, Д.Г., Штерн, Ю.И., Рогачев, М. С. и др. Mo/Ni и Ni/Ta-W-N/Ni тонкопленочные контактные слои для межсоединений термоэлементов на основе (Bi, Sb)2Te3. Неорган. материалы. 2016. Т. 52. № 11. С. 1206.
  11. 11. Zhang, Z., Gurtaran, M., and Dong, H., Low-Cost Magnesium-Based Thermoelectric Materials: Progress, Challenges, and Enhancements, ACS Appl. Energy Mater., 2024, vol. 7, no. 14, p. 5629.https://doi.org/10.1021/acsaem.4c00961
  12. 12. Ouyang, Z., Modelling of segmented high performance thermoelectric generators with effects of thermal radiation, electrical and thermal contact resistances, Scientific reports, 2016, vol. 6, p. 1.
  13. 13. Arai, K., Matsubara, M., Sawada, Y., Sakamoto, T., Kineri, T., Kogo, Y., Iida, T., and Nishio, K., Improvement of Electrical Contact Between TE Material and Ni Electrode Interfaces by Application of a Buffer Layer, J. electronic materials, 2012, vol. 41, no. 6, p. 1771.
  14. 14. Gupta, R. P., Xiong, K., White, J. B., Cho, K., Alshareef, H. N., and Gnade, B. E., Low resistance ohmic contacts to Bi2Te3 using Ni and Co metallization, J. Electrochem. Soc., 2010, vol. 157, no. 6, p. H666. https://doi.org/10.1149/1.3385154
  15. 15. Asgari, M., Darband, G. B., and Monirvaghefi, M., Electroless deposition of Ni-W-Mo-Co-P films as a binder-free, efficient and durable electrode for electrochemical hydrogen evolution, Electrochim. Acta, 2023, vol. 446, ID142001.
  16. 16. Lide, D. R., Handbook of Chemistry and Physics CRC Press LLC, 2004, vol. 85, Section 16, p. 2052.
  17. 17. Мельников, П.С. Справочник по гальванопокрытиям в машиностроении. М.: Машиностроение, 1991. 384 с.
  18. 18. Штерн, М.Ю. Наноструктурированные термоэлектрические материалы для температур 200-1200 К, полученные искровым плазменным спеканием. Изв. вузов. Электроника. 2022. Т. 27. № 6. С. 695.
  19. 19. Zoui, M. A., Bentouba, S., Stocholm, J. G., and Bourouis, M., A review on thermoelectric generators: Progress and applications, Energies, 2020, vol. 13, no. 14, p. 3606. https://doi.org/10.3390/en13143606
  20. 20. Zhu, X., Cao, L., Zhu, W., and Deng, Y., Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance, Adv. Mater. Interfaces, 2018, vol. 5, no. 23, ID1801279. https://doi.org/10.1002/admi.201801279
  21. 21. Shtern, M.Y., Karavaev, I.S., Shtern, Y.I., Kozlov, A.O., and Rogachev, M.S., The surface preparation of thermoelectric materials for deposition of thin-film contact systems, Semiconductors, 2019, vol. 53, no. 13, p. 1848. https://doi.org/10.1134/S1063782619130177
  22. 22. Штерн, М.Ю., Караваев, И.С., Рогачев, М.С., Штерн, Ю.И., Мустафоев, Б.Р., Корчагин, Е.П., Козлов, А.О. Методики исследования электрического контактного сопротивления в структуре металлическая пленка - полупроводник. Физика и техника полупроводников. 2022. Т. 56. № 1. C. 1097.
  23. 23. Xia, H., Drymiotis, F., Chen, C. L., Wu, A., and Snyder, G. J., Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications, J. Mater. Sci., 2014, no. 49, p. 1716.
  24. 24. Zhu, X., Cao, L., Zhu, W., and Deng, Y., Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance, Adv. Mater. Interfaces, 2018, vol. 5, no. 23, ID1801279. https://doi.org/10.1002/admi.201801279
  25. 25. Song, J., Kim, Y., Cho, B. J., Yoo, C. Y., Yoon, H., and Park, S. H., Thermal diffusion barrier metallization based on Co-Mo powder-mixed composites for n-type skutterudite ((Mm, Sm) yCo4Sb12) thermoelectric devices, J. Alloys and Compounds, 2020, vol. 818, ID152917. https://doi.org/10.1016/j.jallcom.2019.152917
  26. 26. Zhang, H., Wei, P., Zhou, C., Li, L., Nie, X., Zhu, W., and Zhao, W., Improved contact performance and thermal stability of Co-Ni alloy barrier layer for bismuth telluride-based thermoelectric devices, J. Mater. Sci.: Materials in Electronics, 2024, vol. 35, no. 10, p. 727. https://doi.org/10.1007/s10854-024-12490-y
  27. 27. Liu, W. and Bai, S., Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module, J. Materiomics, 2019, vol. 5, no. 3, p. 321. https://doi.org/10.1016/j.jmat.2019.04
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека