- PII
- S3034618525020047-1
- DOI
- 10.7868/S3034618525020047
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 2
- Pages
- 161-170
- Abstract
- An electrochemical method is proposed for forming contacts to high-temperature thermoelements with barrier layers based on refractory metal alloys. The contacts are intended for thermoelements with operating temperatures of up to 900 K. The barrier layers had a specific resistance of no more than 15.3*10-8 Ohm m, and a specific contact resistance of no more than 1.5*10-9 Ohm m2. The best results were obtained for barrier layers based on Mo-Ni alloy with a Mo content of 36.5 wt.%. Ag films obtained by electrochemical deposition were used as a commutation layer in the contacts. It has been established that the contacts are thermally stable at the limiting operating temperatures of thermoelements and have an adhesive strength of at least 10.3 MPa.
- Keywords
- термоэлементы контакты барьерные слои тугоплавкие металлы электрохимическое осаждение
- Date of publication
- 17.02.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 55
References
- 1. Jaldurgam, F. F., Ahmad, Z., and Touati, F., Synthesis and performance of large-scale cost-effective environment-friendly nanostructured thermoelectric materials, Nanomaterials, 2021, vol. 11, no. 5, ID1091, p. 1.
- 2. Liu, Z. and Mori, T., Nanostructured bulk thermoelectric materials for energy harvesting, in System-Materials Nanoarchitectonics, Wakayama, Y. and Ariga, K. (eds), Tokyo: Springer, 2022, p. 199-231. https://doi.org/10.1007/978-4-431-56912-1_13
- 3. Okhay, O. and Tkach, A., Metal Oxide Based Thermoelectric Materials, In Optical Properties of Metal Oxide Nanostructures, Kumar, V., Ayoub, I., Sharma, V., Swart, H.C. Eds, Singapore: Springer 2023, vol. 26, p. 399-430. https://doi.org/10.1007/978-981-99-5640-1_13
- 4. Zhu, L., Li, H., Chen, S., Tian, X., Kang, X., Jiang, X., and Qiu, S., Optimization analysis of a segmented thermoelectric generator based on genetic algorithm, Renewable Energy, 2020, vol. 156, p. 710. https://doi.org/10.1016/j.renene.2020.04.120
- 5. Штерн, М.Ю. Многосекционные термоэлементы, преимущества и проблемы их создания. Физика и техника полупроводников. 2021. Т. 55. № 12. С. 1105. DOI: 10.21883/FTP.2021.12.51690.02.
- 6. Ouyang, Z. and Li, D., Design of segmented high-performance thermoelectric generators with cost in consideration, Appl. Energy, 2018, vol. 221, p. 112. https://doi.org/10.1016/j.apenergy.2018.03.106
- 7. Zhu, Y., Newbrook, D. W., Dai, P., Liu, J., de Groot, C. K., and Huang, R., Segmented thermoelectric generator modelling and optimization using artificial neural networks by iterative training, Energy and AI, 2023, vol. 12, ID100225. https://doi.org/10.1016/j.egyai.2022.100225
- 8. Shtern, M., Rogachev, M., Shtern, Y., Gromov, D., Kozlov, A., and Karavaev, I., Thin-film contact systems for thermocouples operating in a wide temperature range, J. Alloys and Compounds, 2021, vol. 852, p. 156889.
- 9. Zhu, L., Sun, D., Li, X., Liu, W., Huang, J., Liang, C., & Hu, X., Electroless plating of iron-group metals and electrochemical comparison for thermoelectric contacts, Solid State Sciences, 2024, vol. 154, p. 107613(1)-107613(7).
- 10. Громов, Д.Г., Штерн, Ю.И., Рогачев, М. С. и др. Mo/Ni и Ni/Ta-W-N/Ni тонкопленочные контактные слои для межсоединений термоэлементов на основе (Bi, Sb)2Te3. Неорган. материалы. 2016. Т. 52. № 11. С. 1206.
- 11. Zhang, Z., Gurtaran, M., and Dong, H., Low-Cost Magnesium-Based Thermoelectric Materials: Progress, Challenges, and Enhancements, ACS Appl. Energy Mater., 2024, vol. 7, no. 14, p. 5629.https://doi.org/10.1021/acsaem.4c00961
- 12. Ouyang, Z., Modelling of segmented high performance thermoelectric generators with effects of thermal radiation, electrical and thermal contact resistances, Scientific reports, 2016, vol. 6, p. 1.
- 13. Arai, K., Matsubara, M., Sawada, Y., Sakamoto, T., Kineri, T., Kogo, Y., Iida, T., and Nishio, K., Improvement of Electrical Contact Between TE Material and Ni Electrode Interfaces by Application of a Buffer Layer, J. electronic materials, 2012, vol. 41, no. 6, p. 1771.
- 14. Gupta, R. P., Xiong, K., White, J. B., Cho, K., Alshareef, H. N., and Gnade, B. E., Low resistance ohmic contacts to Bi2Te3 using Ni and Co metallization, J. Electrochem. Soc., 2010, vol. 157, no. 6, p. H666. https://doi.org/10.1149/1.3385154
- 15. Asgari, M., Darband, G. B., and Monirvaghefi, M., Electroless deposition of Ni-W-Mo-Co-P films as a binder-free, efficient and durable electrode for electrochemical hydrogen evolution, Electrochim. Acta, 2023, vol. 446, ID142001.
- 16. Lide, D. R., Handbook of Chemistry and Physics CRC Press LLC, 2004, vol. 85, Section 16, p. 2052.
- 17. Мельников, П.С. Справочник по гальванопокрытиям в машиностроении. М.: Машиностроение, 1991. 384 с.
- 18. Штерн, М.Ю. Наноструктурированные термоэлектрические материалы для температур 200-1200 К, полученные искровым плазменным спеканием. Изв. вузов. Электроника. 2022. Т. 27. № 6. С. 695.
- 19. Zoui, M. A., Bentouba, S., Stocholm, J. G., and Bourouis, M., A review on thermoelectric generators: Progress and applications, Energies, 2020, vol. 13, no. 14, p. 3606. https://doi.org/10.3390/en13143606
- 20. Zhu, X., Cao, L., Zhu, W., and Deng, Y., Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance, Adv. Mater. Interfaces, 2018, vol. 5, no. 23, ID1801279. https://doi.org/10.1002/admi.201801279
- 21. Shtern, M.Y., Karavaev, I.S., Shtern, Y.I., Kozlov, A.O., and Rogachev, M.S., The surface preparation of thermoelectric materials for deposition of thin-film contact systems, Semiconductors, 2019, vol. 53, no. 13, p. 1848. https://doi.org/10.1134/S1063782619130177
- 22. Штерн, М.Ю., Караваев, И.С., Рогачев, М.С., Штерн, Ю.И., Мустафоев, Б.Р., Корчагин, Е.П., Козлов, А.О. Методики исследования электрического контактного сопротивления в структуре металлическая пленка - полупроводник. Физика и техника полупроводников. 2022. Т. 56. № 1. C. 1097.
- 23. Xia, H., Drymiotis, F., Chen, C. L., Wu, A., and Snyder, G. J., Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications, J. Mater. Sci., 2014, no. 49, p. 1716.
- 24. Zhu, X., Cao, L., Zhu, W., and Deng, Y., Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance, Adv. Mater. Interfaces, 2018, vol. 5, no. 23, ID1801279. https://doi.org/10.1002/admi.201801279
- 25. Song, J., Kim, Y., Cho, B. J., Yoo, C. Y., Yoon, H., and Park, S. H., Thermal diffusion barrier metallization based on Co-Mo powder-mixed composites for n-type skutterudite ((Mm, Sm) yCo4Sb12) thermoelectric devices, J. Alloys and Compounds, 2020, vol. 818, ID152917. https://doi.org/10.1016/j.jallcom.2019.152917
- 26. Zhang, H., Wei, P., Zhou, C., Li, L., Nie, X., Zhu, W., and Zhao, W., Improved contact performance and thermal stability of Co-Ni alloy barrier layer for bismuth telluride-based thermoelectric devices, J. Mater. Sci.: Materials in Electronics, 2024, vol. 35, no. 10, p. 727. https://doi.org/10.1007/s10854-024-12490-y
- 27. Liu, W. and Bai, S., Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module, J. Materiomics, 2019, vol. 5, no. 3, p. 321. https://doi.org/10.1016/j.jmat.2019.04