ОХНМЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

Высокоэнтропийные колумбиты: структура, оптические и электрические свойства

Код статьи
S0424857025030018-1
DOI
10.31857/S0424857025030018
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 61 / Номер выпуска 3
Страницы
172-179
Аннотация
Впервые синтезированы высокоэнтропийный состав (Mg0.2Zn0.2Ni0.2Co0.2Mn0.2)Nb2O6 со структурой колумбита и его Ti-замещенный состав (5%). Синтез проведен модифицированным методом сжигания растворов с последующим высокотемпературным спеканием. Методами рентгенофазового анализа и сканирующей электронной микроскопии проведена аттестация образцов. По данным диффузных спектров отражения рассчитана ширина запрещенной зоны прямого разрешенного электронного перехода (Egпр ≈ 2.98–3.05 эВ). Твердые растворы характеризуются преимущественно электронной проводимостью. Замещение катионами титана приводит к увеличению проводимости на 1.2 порядка в области температур 160–750°C.
Ключевые слова
высокоэнтропийный состав структура колумбита ширина запрещенной зоны проводимость
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
14

Библиография

  1. 1. Lee, H.J., Hong, K.S., Kim, S.J., and Kim, I.T., Dielectric properties of MNb2O6 compounds (where M = Ca, Mn, Co, Ni, or Zn), Mater. Res. Bull., 1997, vol. 32, p. 847.
  2. 2. Belous, A., Ovchar, O., Jancar, B., Spreitzer, M., Annino, G., Grebennikov, D., and Mascher, P., The effect of chemical composition on the structure and dielectric properties of the columbites A2+ MNb2O6, J. Electrochem. Soc., 2009, vol. 156, p. G206.
  3. 3. Zhang, Y.C., Yue, Z.X., Gui, Z.L., and Li, L.T., Microwave dielectric properties of (Zn1–xMgx) Nb2O6, ceramics, Mater. Lett., 2003, vol. 57, p. 4531.
  4. 4. Zhang, Y.C., Yue, Z.X., Qi, X., Li, B., Gui, Z.L., and Li, L.T., Microwave dielectric properties of Zn(Nb1–xTax)2O6 ceramics, Mater. Lett., 2004, vol. 58, p. 1392.
  5. 5. Kim, J.H. and Kim, E.S., Effect of isovalent substitution on microwave dielectric properties of Mg4Nb2O9 ceramics, J. Electron. Mater., 2019, vol. 48, p. 2411.
  6. 6. Thirumal, M. and Ganguli, A.K., Synthesis and dielectric properties of magnesium niobate-magnesium tantalate solid solutions, Mater. Res. Bull., 2001, vol. 36, p. 2421.
  7. 7. Pullar, R.C., Vaughan, C., and McN Alford, N., The effects of sintering aids upon dielectric microwave properties of columbite niobates, M2+Nb2O6, J. Phys. D. Appl. Phys., 2004, vol. 37, p. 348.
  8. 8. Huang, Z. and Li L., Enhanced microwave dielectric performances of niobate structured Zn(Nb1-2xZrxWx)2O6 ceramics, Ceram. Int., 2024, vol. 50, p. 12081.
  9. 9. Cheng, Ch., Wu, D., Gong, T., Yan, Y., Liu, Y., Ji, W., Hou, L., and Yuan, Ch., Internal and external cultivation design of zero‐strain columbite‐structured MNb2O6 toward lithium-Ion capacitors as competitive anodes, Adv. Energy Mater., 2023, vol. 13, p. 2302107.
  10. 10. De Luna, Y., N.B., Ma, Sh., Li, G., and Bensalah, N., Highly stable free-standing cobalt niobate with orthorhombic structure as anode material for Li-ion batteries, ChemElectroChem, 2024, vol. 11, p. e202300627.
  11. 11. Morkhova, Y.A., Koroleva, M.S., Egorova, A.V., Pimenov, A.A., Krasnov, A.G., Makeev, B.A., Blatov, V.A., and Kabanov, A.A., Magnocolumbites Mg1–xMxNb2O6–δ (x = 0, 0.1, and 0.2; M = Li and Cu) as new oxygen ion conductors: Theoretical Assessment and Experiment, J. Phys. Chem. C, 2023, vol. 127, p. 52.
  12. 12. Morkhova, Y.A., Koroleva, M.S., Egorova, A.V., Krasnov, A.G., Starostina, I.A., and Kabanov, A.A., Exhaustive study of electrical conductivity in the MNb2–xTixO6–0.5x (M = Mg, Ca, Zn; x = 0, 0.1, 0.2) columbites, ECS Adv., 2024, vol. 3, p. 024504.
  13. 13. Arroyo Y De Dompablo, M.E., Lee, Y.L., and Morgan, D., First principles investigation of oxygen vacancies in columbite MNb2O6 (M = Mn, Fe, Co, Ni, Cu), Chem. Mater., 2010, vol. 22, p. 906.
  14. 14. López-Blanco, M., Amador, U., and García-Alvarado, F., Structural characterization and electrical properties of NiNb2–xTaxO6 (0 ≤ x ≤ 2) and some Ti-substituted derivatives, J. Solid State Chem., 2009, vol. 182, p. 1944.
  15. 15. Orera, A., García-Alvarado, F., and Irvine, J.T.S., Effect of Ti-substitution on the electrical properties of MnNb2O6–δ, Chem. Mater., 2007, vol. 19, p. 2310.
  16. 16. Sarkar, A., Wang, Q., Schiele, A., Chellali, M.R., Bhattacharya, S.S., Wang, D., Brezesinski, T., Hahn, H., Velasco, L., and Breitung, B., High-Entropy oxides: fundamental aspects and electrochemical properties, Adv. Mater., 2019, vol. 31, p. 1806236.
  17. 17. Li, F., Zhou, L., Liu, J.X., Liang, Y., and Zhang, G.J., High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials, J. Adv. Ceram., 2019, vol. 8, p. 576.
  18. 18. Ren, K., Wang, Q., Shao, G., Zhao, X., and Wang, Y., Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating, Scr. Mater., 2020, vol. 178, p. 382.
  19. 19. Feng, C., Zhou, Y., Chen, M., Zou, L., Li, X., An, X., Zhao, Q., Xiaokaiti, P., Abudula, A., Yan, K., and Guan, G., High-entropy spinel (FeCoNiMnAl)3O4 with three-dimensional microflower structure for stable seawater oxidation, Appl. Catal. B Environ. Energy, 2024, vol. 349, p. 123875.
  20. 20. Rodríguez-Carvajal, J., Recent advances in magnetic structure determination by neutron powder diffraction, Phys. B Phys. Condens. Matter, 1993, vol. 192, p. 55.
  21. 21. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides, Acta Cryst. А, 1976, vol. 32, p. 751.
  22. 22. Pullar, R.C., The synthesis, properties, and applications of columbite niobates (M2+Nb2O6): A critical review, J. Am. Ceram. Soc., 2009, vol. 92, p. 563.
  23. 23. Brahma, S., Choudhary, R.N.P., and Thakur, A.K., AC impedance analysis of LaLiMo2O8 electroceramics, Phys. B Condens. Matter., 2005, vol. 355, p. 188.
  24. 24. Nasri, S., Oueslati, A., Chaabane, I., and Gargouri, M., AC conductivity, electric modulus analysis and electrical conduction mechanism of RbFeP2O7 ceramic compound, Ceram. Int., 2016, vol. 42, p. 14041.
  25. 25. Tan, K.B., Khaw, C.C., Lee, C.K., Zainal, Z., Tan, Y.P., and Shaari, H., High temperature impedance spectroscopy study of non-stoichiometric bismuth zinc niobate pyrochlore, Mater. Sci. Pol., 2009, vol. 27, p. 947.
  26. 26. Tan, P.Y., Tan, K.B., Khaw, C.C., Zainal, Z., Chen, S.K., and Chon, M.P., Structural and electrical properties of bismuth magnesium tantalate pyrochlores, Ceram. Int., 2012, vol. 38, p. 5401.
  27. 27. Koroleva, M.S., Ishchenko, A.V., Vlasov, M.I., Krasnov, A.G., Istomina, E.I., Shein, I.R., Weinstein, I.A., and Piir, I.V., Structural, Optical, Luminescence, and Electrical Properties of Eu/Li- and Eu/Na-Codoped Magnesium Bismuth Niobate Pyrochlores, Inorg. Chem., 2022, vol. 61, p. 9295.
  28. 28. Kamimura, S., Abe, S., Tsubota, T., and Ohno, T., Solar-driven H2 evolution over CuNb2O6: Effect of two polymorphs (monoclinic and orthorhombic) on optical property and photocatalytic activity, J. Photochem. Photobiol. A Chem., 2018, vol. 356, p. 263.
  29. 29. El Bachiri, A., El Hasnaoui, M., Louardi, A., Narjis, A., and Bennani, F., Structural and dielectric studies for the conduction mechanism analyses of lithium-niobate oxide ferroelectric ceramics, Phys. B Condens. Matter., 2019, vol. 571, p. 181.
  30. 30. Jonscher, A.K., A new understanding of the dielectric relaxation of solids, J. Mater. Sci., 1981, vol. 16, p. 2037
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека