ОХНМЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

ПОДВИЖНОСТЬ КИСЛОРОДА ДОПИРОВАННЫХ САМАРИЕМ НИКЕЛАТОВ НЕОДИМА, СПЕЧЕННЫХ ЭЛЕКТРОННЫМИ ПУЧКАМИ

Код статьи
S0424857025020021-1
DOI
10.31857/S0424857025020021
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 61 / Номер выпуска 2
Страницы
140-152
Аннотация
Фазы Раддлесдена-Поппера являются известными материалами электрохимических устройств, таких как твердооксидные топливные элементы/электролизеры, кислородпроводящие мембраны. Допирование A-положения лантаноидами меньшего радиуса может помочь увеличить кислородную подвижность, однако данный вопрос до сих пор мало исследован. Настоящая работа посвящена изучению фазового состава и транспортных свойств допированных Sm никелатов Nd, спеченных радиационно-термическим методом с использованием электронных пучков. Nd2-xSmxNiO4+δ (x = 0.2, 0.4) были синтезированы модифицированным методом Пекини и спечены электронными пучками при 1150-1250°C. Полученные материалы охарактеризованы с помощью рентгенофазового анализа, рентгеновской фотоэлектронной спектроскопии и термопрограммированного изотопного обмена с C18O2 в проточном реакторе. Кислород поверхности материалов представлен в виде двух форм с различной энергией связи. По данным термопрограммированного изотопного обмена кислорода, для образцов характерна неоднородность подвижности кислорода, причем при x = 0.4 образуется канал медленной диффузии. Данные особенности диффузии кислорода, по-видимому, связаны с влиянием допирования и радиационно-термического спекания на структуру с образованием примесных фаз, нарушением кооперативного механизма диффузии за счет локальных дефектов и изменения состава поверхности и междоменных границ.
Ключевые слова
твердооксидный топливный элемент катод кислородпроводящая мембрана радиационно-термическое спекание фазы Раддлесдена-Поппера Nd2NiO4 допирование изотопный обмен кислорода подвижность кислорода самодиффузия
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
11

Библиография

  1. 1. Afroze, S., Reza, M.S., Amin, M.R., Taweekun, J., and Azad, A.K., Progress in nanomaterials fabrication and their prospects in artificial intelligence towards solid oxide fuel cells: A review, Int. J. Hydrogen Energy, 2024, vol. 52C, p. 216. https://doi.org/10.1016/j.ijhydene.2022.11.335
  2. 2. Yadav, A.K., Sinha, S., and Kumar, A., Advancements in composite cathodes for intermediate-temperature solid oxide fuel cells: A comprehensive review, Int. J. Hydrogen Energy, 2024, vol. 59, p. 1080. https://doi.org/10.1016/j.ijhydene.2024.02.124
  3. 3. Li, M., Wang, J., Chen, Z., Qian, X., Sun, C., Gan, D., Xiong, K., Rao, M., Chen, C., and Li, X., A comprehensive review of thermal management in solid oxide fuel cells: Focus on burners, heat exchangers, and strategies, Energies, 2024, vol. 17, no. 5, p. 1005. https://doi.org/10.3390/en17051005
  4. 4. Yuan, Q., Li, X., Han, S., Wang, S., Wang, M., Chen, R., Kudashev, S., Wei, T., and Chen, D., Performance analysis and optimization of SOFC/GT hybrid systems: A review, Energies, 2024, vol. 17, no. 5, p. 1265. https://doi.org/10.3390/en17051265
  5. 5. Helal, H., Ahrouch, M., Rabehi, A., Zappa, D., and Comini, E., Nanostructured materials for enhanced performance of solid oxide fuel cells: A comprehensive review, Crystals, 2024, vol. 14, no. 4, p. 306. https://doi.org/10.3390/cryst14040306
  6. 6. Kalinina, E. and Pikalova, E., Opportunities, challenges and prospects for electrodeposition of thin-film functional layers in solid oxide fuel cell technology, Materials, 2021, vol. 14, no. 19, p. 5584. https://doi.org/10.3390/ma14195584
  7. 7. Iqbal, M.A., Jaiswal, S.K., and Quaff, A.R., Increasing Efficiency of Oxygen Separation from Air Through Ceramic Membranes - A Review, in Fluid Mechanics and Hydraulics, HYDRO 2021. Lecture Notes in Civil Engineering, vol. 314, Timbadiya, P.V., Patel, P.L., Singh, V.P., and Barman, B., Eds, Singapore: Springer, 2023, p. 533. https://doi.org/10.1007/978-981-19-9151-6_43
  8. 8. Chen, G., Widenmeyer, M., Yu, X., Han, N., Tan, X., Homm, G., Liu, S., and Weidenkaff, A., Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors, J. Am. Ceram. Soc., 2024, vol. 107, no. 3, p. 1490. https://doi.org/10.1111/jace.19411
  9. 9. Yan, F., Qian, J., Wang, S., and Zhai, J., Progress and outlook on lead-free ceramics for energy storage applications, Nano Energy, 2024, vol. 123, p. 109394. https://doi.org/10.1016/j.nanoen.2024.109394
  10. 10. Hu, Z., Yin, H., Li, M., Li, J., and Zhu, H., Research and developments of ceramic-reinforced steel matrix composites - A comprehensive review, Int. J. Adv. Manuf. Technol., 2024, vol. 131, p. 125. https://doi.org/10.1007/s00170-024-13123-8
  11. 11. Zhang, S., Qiu, Q., Zeng, C., Paik, K.-W., He, P., and Zhang, S., A review on heating mechanism, materials and heating parameters of microwave hybrid heated joining technique, J. Manuf. Process., 2024, vol. 116, p. 176. https://doi.org/10.1016/j.jmapro.2024.02.055
  12. 12. Sadykov, V., Usoltsev, V., Fedorova, Yu., Mezentseva, N., Krieger, T., Eremeev, N., Arapova, M., Ishchenko, A., Salanov, A., Pelipenko, V., Muzykantov, V., Ulikhin, A., Uvarov, N., Bobrenok, O., Vlasov, A., Korobeynikov, M., Bryazgin, A., Arzhannikov, A., Kalinin, P., Smorygo, O., and Thumm, M., Advanced sintering techniques in design of planar IT SOFC and supported oxygen separation membranes, in Sintering of Ceramics - New Emerging Techniques, Lakshmanan, A., Ed, Vienna: InTech, 2012, p. 121. https://doi.org/10.5772/34958
  13. 13. Lisitsyn, V., Tulegenova, A., Golkovski, M., Polisadova, E., Lisitsyna, L., Mussakhanov, D., and Alpyssova, G., Radiation synthesis of high-temperature wide-bandgap ceramics, Micromachines, 2023, vol. 14, no. 12, p. 2193. https://doi.org/10.3390/mi14122193
  14. 14. Angappan, G., Sivaraj, S., Mohankumar, M., Vaidyanathan, E., and Joseph, A., Recent developments in additive manufacturing equipment's and its processes, in Additive Manufacturing with Novel Materials: Processes, Properties and Applications, Rajasekar, R., Moganapriya, C., and Sathish Kumar, P., Eds, Scrivener Publishing LLC, 2024, p. 23. https://doi.org/10.1002/9781394198085.ch2
  15. 15. Burdovitsin, V., Dvilis, E., Zenin, A., Klimov, A., Oks, E., Sokolov, V., Kachaev, A.A., and Khasanov, O.L., Electron beam sintering of zirconia ceramics, Adv. Mat. Res., 2014, vol. 872, p. 150. https://doi.org/10.4028/www.scientific.net/AMR.872.150
  16. 16. Martin, B., Amos, D., Brehob, E., van Hest, M.F., and Druffel, T., Techno-economic analysis of roll-to-roll production of perovskite modules using radiation thermal processes, Appl. Energy, 2022, vol. 307, p. 118200. https://doi.org/10.1016/j.apenergy.2021.118200
  17. 17. Ancharova, U., Mikhailenko, M., Tolochko, B., Lyakhov, N., Korobeinikov, M., Bryazgin, A., Bezuglov, V.V., Shtarklev, E.A., Vlasov, A. Yu., and Vinokurov, Z.S., Synthesis and staging of the phase formation for strontium ferrites in thermal and radiation-thermal reactions, IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 81, p. 012122. https://doi.org/10.1088/1757-899X/81/1/012122
  18. 18. Bespalko, Yu., Eremeev, N., Sadovskaya, E., Krieger, T., Bulavchenko, O., Suprun, E., Mikhailenko, M., Korobeynikov, M., and Sadykov, V., Synthesis and oxygen mobility of bismuth cerates and titanates with pyrochlore structure, Membranes, 2023, vol. 13, no. 6, p. 598. https://doi.org/10.3390/membranes13060598
  19. 19. Садыков, В.А., Садовская, Е.М., Еремеев, Н.Ф., Скрябин, П.И., Краснов, А.В., Беспалко, Ю.Н., Павлова, С.Н., Федорова, Ю.Е., Пикалова, Е.Ю., Шляхтина А.В. Подвижность кислорода материалов твердооксидных топливных элементов и каталитических мембран (обзор). Электрохимия. 2019. Т. 55. С. 899.
  20. 20. Sadykov, V.A., Sadovskaya, E.M., Eremeev, N.F., Skriabin, P.I., Krasnov, A.V., Bespalko, Yu.N., Pavlova, S.N., Fedorova, Yu.E., Pikalova, E. Yu., and Shlyakhtina, A.V., Oxygen mobility in the materials for solid oxide fuel cells and catalytic membranes (review), Russ. J. Electrochem., 2019, vol. 55, p. 701. https://doi.org/10.1134/S1023193519080147
  21. 21. Sadykov, V., Eremeev, N., Sadovskaya, E., Bespalko, Yu., Simonov, M., Arapova, M., and Smal, E., Nanomaterials with oxygen mobility for catalysts of biofuels transformation into syngas, SOFC and oxygen/hydrogen separation membranes: Design and performance, Catal. Today, 2023, vol. 423, p. 113936. https://doi.org/10.1016/j.cattod.2022.10.018
  22. 22. Sadykov, V., Pikalova, E., Sadovskaya, E., Shlyakhtina, A., Filonova, E., and Eremeev, N., Design of mixed ionic-electronic materials for permselective membranes and solid oxide fuel cells based on their oxygen and hydrogen mobility, Membranes, 2023, vol. 13, no. 8, p. 698. https://doi.org/10.3390/membranes13080698
  23. 23. Baratov, S., Filonova, E., Ivanova, A., Hanif, M.B., Irshad, M., Khan, M.Z., Motola, M., Rauf, D., and Medvedev, D., Current and further trajectories in designing functional materials for solid oxide electrochemical cells: A review of other reviews, J. Energy Chem., 2024, vol. 94, p. 302. https://doi.org/10.1016/j.jechem.2024.02.047
  24. 24. Hussain, S. and Yangping, L., Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte, Energy Transit., 2020, vol. 4, p. 113. https://doi.org/10.1007/s41825-020-00029-8
  25. 25. Pikalova, E. Yu., Guseva, E.M., and Filonova, E.A., Short review on recent studies and prospects of application of rare-earth-doped La2NiO4+δ as air electrodes for solid-oxide electrochemical cells, Electrochem. Mater. Technol., 2023, vol. 2, p. 20232025. https://doi.org/10.15826/elmattech.2023.2.025
  26. 26. Nande, A., Chaudhari, V., Punde, J.D., and Dhoble, S.J., Rare-earth doped cathode materials for solid oxide fuel cells, in Emerging Energy Materials, Nair, G., Nagabhushana, H., Dhoble, N., and Dhoble, S.J., Eds, Boca Raton: CRC Press, 2024, p. 32. https://doi.org/10.1201/9781003315261-3
  27. 27. Oh, S., Kim, H., Jeong, I., Kim, D., Yu, H., and Lee, K.T., Recent progress in oxygen electrodes for protonic ceramic electrochemical cells, J. Korean Ceram. Soc., 2024, vol. 61, p. 224. https://doi.org/10.1007/s43207-023-00360-y
  28. 28. Tarutin, A.P., Lyagaeva, J.G., Medvedev, D.A., Bi, L., and Yaremchenko, A.A., Recent advances in layered Ln2NiO4+δ nickelates: Fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells, J. Mater. Chem. A, 2021, vol. 9, p. 154. https://doi.org/10.1039/D0TA08132A
  29. 29. Li, X. and Benedek, N.A., Enhancement of ionic transport in complex oxides through soft lattice modes and epitaxial strain, Chem. Mater., 2015, vol. 27, p. 2647. https://doi.org/10.1021/acs.chemmater.5b00445
  30. 30. Yang, S., Liu, G., Lee, Y.-L., Bassat, J.-M, Gamon, J., Villesuzanne, A., Pietras, J., Zhou, X.-D., and Zhong, Y., A systematic ab initio study of vacancy formation energy, diffusivity, and ionic conductivity of Ln2NiO4+δ (Ln = La, Nd, Pr), J. Power Sources, 2023, vol. 576, p. 233200. https://doi.org/10.1016/j.jpowsour.2023.233200
  31. 31. Bamburov, A., Naumovich, Ye., Khalyavin, D.D., and Yaremchenko, A.A., Intolerance of the Ruddlesden-Popper La2NiO4+δ structure to A-site cation deficiency, Chem. Mater., 2023, vol. 35, no. 19, p. 8145. https://doi.org/10.1021/acs.chemmater.3c01594
  32. 32. Pikalova, E., Eremeev, N., Sadovskaya, E., Sadykov V., Tsvinkinberg, V., Pikalova, N., Kolchugin, A., Vylkov, A., Baynov, I., and Filonova, E., Influence of the substitution with rare earth elements on the properties of layered lanthanum nickelate - Part 1: Structure, oxygen transport and electrochemistry evaluation, Solid State Ionics, 2022, vol. 379, p. 115903. https://doi.org/10.1016/j.ssi.2022.115903
  33. 33. Pikalova, E., Sadykov, V., Tsvinkinberg, V., Kolchugin, A., Zhulanova, T., Guseva, E., Eremeev, N., Sadovskaya, E., Belyaev, V., and Filonova, E., Boosting the oxygen transport kinetics and functional properties of La2NiO4+δ via partial La-to-Sm substitution, J. Alloys and Compd., 2024, vol. 980, p. 173648. https://doi.org/10.1016/j.jallcom.2024.173648
  34. 34. Vibhu, V., Rougier, A., Nicollet, C., Flura, A., Grenier, J.-C., and Bassat, J.-M., La2-xPrxNiO4+δ as suitable cathodes for metal supported SOFCs, Solid State Ionics, 2015, vol. 278, p. 32. https://doi.org/10.1016/j.ssi.2015.05.005
  35. 35. Sadykov, V.A., Sadovskaya, E.M., Filonova, E.A., Eremeev, N.F., Belyaev, V.D., Tsvinkinberg, V.A., and Pikalova, E. Yu., Oxide ionic transport features in Gd-doped La nickelates, Solid State Ionics, 2020, vol. 357, p. 115462. https://doi.org/10.1016/j.ssi.2020.115462
  36. 36. Sadykov, V.A., Sadovskaya, E.M., Bespalko, Yu.N., Smal’, E.A., Eremeev, N.F., Prosvirin, I.P., Bulavchenko, O.A., Mikhailenko, M.A., and Korobeynikov, M.V., Structural, surface and oxygen transport properties of Sm-doped Nd nickelates, Solid State Ionics, 2024, vol. 412, p. 116596. https://doi.org/10.1016/j.ssi.2024.116596
  37. 37. Pikalova, E. Yu., Sadykov, V.A., Filonova, E.A., Eremeev, N.F., Sadovskaya, E.M., Pikalov, S.M., Bogdanovich, N.M., Lyagaeva, J.G., Kolchugin, A.A., Vedmid’, L.B., Ishchenko, A.V., and Goncharov, V.B., Structure, oxygen transport properties and electrode performance of Ca-substituted Nd2NiO4, Solid State Ionics, 2019, vol. 335, p. 53. https://doi.org/10.1016/j.ssi.2019.02.012
  38. 38. Stoyanovskii, V.O., Vedyagin, A.A., Volodin, A.M., and Bespalko, Yu.N., Effect of carbon shell on stabilization of single-phase lanthanum and praseodymium hexaaluminates prepared by a modified Pechini method, Ceram. Int., 2020, vol. 46, no. 18A, p. 29150. https://doi.org/10.1016/j.ceramint.2020.08.088
  39. 39. Ancharova, U.V., Mikhailenko, M.A., Tolochko, B.P., Lyakhov, N.Z., Korobeinikov, M.V., Bryazgin, A.A., Bezuglov, V.V., Shtarklev, E.A., Vlasov, A. Yu., and Vinokurov, Z.S., Synthesis and staging of the phase formation for strontium ferrites in thermal and radiation-thermal reactions, IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 81, p. 012122. https://doi.org/10.1088/1757-899X/81/1/012122
  40. 40. HighScore Plus | XRD Analysis Software | Malvern Panalytical. https://www.malvernpanalytical.com/en/products/category/software/x-ray-diffraction-software/highscore-with-plus-option (дата обращения: 14.10.2024).
  41. 41. Kwok, R., XPSPeak Software (Version 4.1). http://xpspeak.software.informer.com/4.1/ (дата обращения: 31.03.2024).
  42. 42. Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie, MN, USA: Perkin-Elmer Corporation, 1992, 261 p.
  43. 43. Scofield, J.H., Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, J. Electron Spectros. Relat. Phenom., 1976, vol. 8, no. 2, p. 129. https://doi.org/10.1016/0368-2048 (76)80015-1
  44. 44. Pikalova, E. Yu., Kolchugin, A.A., Sadykov, V.A., Sadovskaya, E.M., Filonova, E.A., Eremeev, N.F., and Bogdanovich, N.M., Structure, transport properties and electrochemical behavior of the layered lanthanide nickelates doped with calcium, Int. J. Hydrogen Energy, 2018, vol. 43, no. 36, p. 17373. https://doi.org/10.1016/j.ijhydene.2018.07.115
  45. 45. Sadykov, V.A., Pikalova, E. Yu., Kolchugin, A.A., Filonova, E.A., Sadovskaya, E.M., Eremeev, N.F., Ishchenko, A.V., Fetisov, A.V., and Pikalov, S.M., Oxygen transport properties of Ca-doped Pr2NiO4, Solid State Ionics, 2018, vol. 317, p. 234. https://doi.org/10.1016/j.ssi.2018.01.035
  46. 46. Nezhad, P.D.K., Bekheet, M.F., Bonmassar, N., Gili, A., Kamutzki, F., Gurlo, A., Doran, A., Schwarz, S., Bernardi, J., Praetz, S., and Niaei, A., Elucidating the role of earth alkaline doping in perovskite-based methane dry reforming catalysts, Catal. Sci. Technol., 2022, vol. 12, no. 4, p. 1229. https://doi.org/10.1039/D1CY02044G
  47. 47. Isacfranklin, M., Yuvakkumar, R., Ravi, G., Thambidurai, M., Nguyen, H.D., and Velauthapillai, D., SmNiO3/SWCNT perovskite composite for hybrid supercapacitor, J. Energy Storage, 2023, vol. 68, p. 107786. https://doi.org/10.1016/j.est.2023.107786
  48. 48. Maksimchuk, T., Filonova, E., Mishchenko, D., Eremeev, N., Sadovskaya, E., Bobrikov, I., Fetisov, A., Pikalova, N., Kolchugin, A., Shmakov, A., Sadykov, V., and Pikalova, E., High-temperature behavior, oxygen transport properties, and electrochemical performance of Cu-substituted Nd1.6Ca0.4NiO4+δ electrode materials, Appl. Sci., 2022, vol. 12, no. 8, p. 3747. https://doi.org/10.3390/app12083747
  49. 49. Jiang, N., Electron beam damage in oxides: A review, Rep. Prog. Phys., 2015, vol. 79, no. 1, p. 016501. https://doi.org/10.1088/0034-4885/79/1/016501
  50. 50. Puglisi, O., Marletta, G., and Torrisi, A., Oxygen depletion in electron beam bombarded glass surfaces studied by XPS, J. Non-Cryst. Solids, 1983, vol. 55, no. 3, p. 433. https://doi.org/10.1016/0022-3093 (83)90047-9
  51. 51. Ding, Y., Pradel, K.C., and Wang, Z.L., In situ transmission electron microscopy observation of ZnO polar and non-polar surfaces structure evolution under electron beam irradiation, J. Appl. Phys., 2016, vol. 119, no. 1, p. 015305. https://doi.org/10.1063/1.4939618
  52. 52. Jun, J., Dhayal, M., Shin, J.-H., Kim, J.-C., and Getoff, N., Surface properties and photoactivity of TiO2 treated with electron beam, Radiat. Phys. Chem., 2006, vol. 75, no. 5, p. 583. https://doi.org/10.1016/j.radphyschem.2005.10.015
  53. 53. Stevens-Kalceff, M.A., Electron-irradiation-induced radiolytic oxygen generation and microsegregation in silicon dioxide polymorphs, Phys. Rev. Lett., 2000, vol. 84, no. 14, p. 3137. https://doi.org/10.1103/physrevlett.84.3137
  54. 54. Lee, D. and Lee, H.N., Controlling oxygen mobility in Ruddlesden-Popper oxides, Materials, 2017, vol. 10, no. 4, p. 368. https://doi.org/10.3390/ma10040368
  55. 55. Nirala, G., Yadav, D., and Upadhyay, S., Ruddlesden-Popper phase A2BO4 oxides: Recent studies on structure, electrical, dielectric, and optical properties, J. Adv. Ceram., 2020, vol. 9, p. 129. https://doi.org/10.1007/s40145-020-0365-x
  56. 56. Wang, Y., Chen, J., Liu, K., Wang, M., Song, D., and Wang, K., Computational screening of La2NiO4+δ cathodes with Ni site doping for solid oxide fuel cells, Inorg. Chem., 2023, vol. 62, no. 19, p. 7574. https://doi.org/10.1021/acs.inorgchem.3c01044
  57. 57. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sec. A, 1976, vol. 32, p. 751. https://doi.org/10.1107/S0567739476001551
  58. 58. Wang, C., Miao, H., Zhang, X., Huang, J., and Yuan, J., On Fe-based perovskite electrodes for symmetrical reversible solid oxide cells-A review, J. Power Sources, 2024, vol. 596, p. 234112. https://doi.org/10.1016/j.jpowsour.2024.234112
  59. 59. Boileau, A., Capon, F., Coustel, R., Laffez, P., Barrat, S., and Pierson, J.F., Inductive effect of Nd for Ni3+ stabilization in NdNiO3 synthesized by reactive DC cosputtering, J. Phys. Chem. C, 2017, vol. 121, no. 39, p. 21579. https://doi.org/10.1021/acs.jpcc.7b02251
  60. 60. Dubois, C., Monty, C., and Philibert, J., Influence of oxygen pressure on oxygen self-diffusion in NiO, Solid State Ionics, 1984, vol. 12, p. 75. https://doi.org/10.1016/0167-2738 (84)90132-2
  61. 61. Dubois, C., Monty, C., and Philibert, J., Oxygen self-diffusion in NiO single crystals, Philos. Mag. A, 1982, vol. 46, no. 3, p. 419. https://doi.org/10.1080/01418618208239569
  62. 62. Voskresenskaya, E.N., Roguleva, V.G., and Anshits, A.G., Oxidant activation over structural defects of oxide catalysts in oxidative methane coupling, Catal. Rev., 1995, vol. 37, no. 1, p. 101. https://doi.org/10.1080/01614949508007092
  63. 63. Mierwaldt, D., Roddatis, V., Risch, M., Scholz, J., Geppert, J., Abrishami, M.E., and Jooss, C., Environmental TEM investigation of electrochemical stability of perovskite and Ruddlesden-Popper type manganite oxygen evolution catalysts, Adv. Sustainable Syst., 2017, vol. 1, no. 12, p. 1700109. https://doi.org/10.1002/adsu.201700109
  64. 64. Bendersky, L.A., Fawcett, I.D., and Greenblatt, M., TEM study of two-dimensional incommensurate modulation in layered La2-2xCa1+2xMn2O7 (0.6 < x < 0.8), Chem. Mater., 2004, vol. 16, no. 25, p. 5304. https: doi.org 10.1021 cm049927e
  65. 65. Huang, F.-T., Xue, F., Gao, B., Wang, L.H., Luo, X., Cai, W., Lu, X.-Z., Rondinelli, J.M., Chen, L.Q., and Cheong, S.-W., Domain topology and domain switching kinetics in a hybrid improper ferroelectric, Nat. Commun., 2016, vol. 7, p. 11602. https://doi.org/10.1038/ncomms11602
  66. 66. Usenka, A., Pankov, V., Vibhu, V., Flura, A., Grenier, J.-C., and Bassat, J.-M., Temperature programmed oxygen desorption and sorption processes on Pr2-xLaxNiO4+δ nickelates, ECS Trans., 2019, vol. 91, no. 1, p. 1341. https://doi.org/10.1149/09101.1341ecst
  67. 67. Sadykov, V.A., Sadovskaya, E.M., Pikalova, E.Yu., Kolchugin, A.A., Filonova, E.A., Pikalov, S.M., Eremeev, N.F., Ishchenko, A.V., Lukashevich, A.I., and Bassat, J.M., Transport features in layered nickelates: Correlation between structure, oxygen diffusion, electrical and electrochemical properties, Ionics, 2018, vol. 24, p. 1181. https://doi.org/10.1007/s11581-017-2279-3
  68. 68. Tropin, E., Ananyev, M., Porotnikova, N., Khodimchuk, A., Saher, S., Farlenkov, A., Kurumchin, E., Shepel, D., Antipov, E., Istomin, S., and Bouwmeester, H., Oxygen surface exchange and diffusion in Pr1.75Sr0.25Ni0.75Co0.25O4±δ, Phys. Chem. Chem. Phys., 2019, vol. 21, no. 9, p. 4779. https://doi.org/10.1039/C9CP00172G
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека