УЛК 541.13

МНОГОЗАРЯДНЫЕ КОЛЛОИДЫ НА ГРАНИЦЕ МЕТАЛЛ/ЭЛЕКТРОЛИТ¹

© 2023 г. Ю. Шикина^{а, *}, В. Шикин^{b, **}

^aАтомный энергетический центр, Сакле (CEA Saclay), Лаборатория ионных исследований (LIONS), Жиф Сюр Иветт, Сакле, F-91191 Франция

^bИнститут физики твердого тела РАН, Черноголовка, Московская обл., 142432 Россия *e-mail: julia.chikina@cea.fr

**e-mail: shikin@issp.ac.ru

Поступила в редакцию 30.06.2022 г.

После доработки 29.07.2022 г.

Принята к публикации 30.08.2022 г.

Обсуждаются электростатические свойства многозарядных коллоидов (так называемых DLVO-комплексов) вблизи границы двух сред с разными диэлектрическими постоянными. Показано, что оставаясь квазинейтральными в объеме электролита DLVO, коллоиды оказываются частично заряженными вблизи границы z=0, разделяющей эти среды. Подробно рассмотрена задача о взаимодействии отдельного коллоида, имеющего твердое затравочное ядро $R_0 \gg \alpha_0$ (a_0 — межатомное расстояние) и заряд $Q=Ze\gg e$ (e — элементарный заряд) с границей металл/электролит. Задача имеет разнообразные приложения в диагностике DLVO-комплексов и практике работы с растворами, способными поддерживать электрофорезное движение коллоидных образований.

Ключевые слова: сила изображения, эффективный заряд, элементарный заряд, коллоид, граница разделения, диэлектрическая постоянная

DOI: 10.31857/S0424857023010218, EDN: JYHWLE

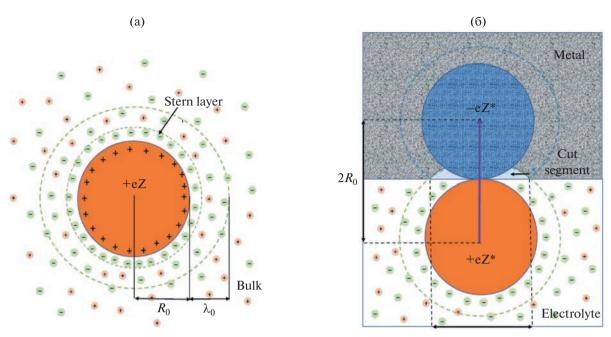
ВВЕДЕНИЕ

Многозарядными, или DLVO-полиэлектролитами, принято называть коллоидные растворы, способные препятствовать коагуляции коллоидной составляющей заряженной среды. Как показано Дерягиным и Ландау [1] (в дальнейшем и авторами книги [2], что послужило основанием для абревиатуры DLVO), наличие дебаевских экранирующих оболочек вокруг каждого из многочастичных, заряженных DLVO-коллоидов порождает отталкивание между ними на дебаевских расстояниях, препятствующее коагуляции примесной фракции. Особенно наглядны проявления стабилизации разбавленных DLVO-растворов в области

$$n_{\odot} \left(R_0 + \lambda_0 \right)^2 \ll 1, \tag{1}$$

где n_{\odot} — объемная плотность растворенных частиц, $R_0 \gg a_0$ — радиус ядра DLVO-коллоида, как правило, заметно превосходящий атомные размеры a_0 , λ_0 — характерная длина экранирования за счет конечной плотности подвижных носителей стабилизирующего электролита. В условиях (1)

стабилизированный *DLVO*-раствор остается однородным. А каждый из *DLVO*-коллоидов интегрально нейтрален. Структура *DLVO*-коллоида представлена на рис. 1а.


Ситуация меняется, если *DLVO*-коллоиды оказываются вблизи границы двух сред с разными диэлектрическими постоянными. Как показано в свое время Вагнером [3] и Онсагером, Самарасом [4], любая заряженная частица с зарядом Q = Ze (e — элементарный заряд) в разбавленном электролите, полностью экранированная в объеме противоионами стабилизирующего электролита, частично или полностью восстанавливает свои кулоновские свойства вблизи границы двух сред с разными диэлектрическими постоянными. Это утверждение логично следует из определения свойств эффективной силы изображения, действующей на заряд Q вблизи геометрического положения границы раздела z = 0

$$F_{\text{wos}}(z) \simeq F_{\varepsilon}(z) \exp\left(-\frac{2z}{\lambda_0}\right),$$
 (2)

$$F_{\varepsilon}(z) = -\frac{Q^2 (\varepsilon_1 - \varepsilon_2)}{4\varepsilon_1 (\varepsilon_1 + \varepsilon_2) z^2}.$$
 (3)

Здесь Q — величина пробного заряда, имеющего точечную структуру, ε_1 , ε_2 — диэлектрические по-

¹ По материалам доклада на 16-м Международном Совещании "Фундаментальные проблемы ионики твердого тела", Черноголовка, 27.06.—03.07.2022.

Рис. 1. (а) Схема многозарядного коллоида, окруженного экранирующей "шубой" в объеме электролита (так называемый DLVO-коллоид). Среди обозначений: R_0 — радиус зарядженного ядра; λ_0 — толщина экранирующего слоя; Stern layer — область электролита, в которой средняя кулоноская энергия заметно превосходит температуру; bulk — область электролита, занятая собственнымми ионами растворителя (так называемые — противоионы). (б) DLVO-коллоид вблизи границы металл/электролит. Отмечено, что сближение DLVO-комплекса с границей возможно до состояния, в котором границы касается его ядро радиуса R_0 . При этом $2R_0$ — расстояние между центрами возникающего диполя с эффективными зарядами $\pm eZ^*$ в центральных точках. Размер хорды "a" контактного проихождения поясняет геометрический смысл формулы (4).

стоянные контактирующих сред. Для $(\varepsilon_1 - \varepsilon_2) > 0$ знак силы $F_\varepsilon(z)$ отвечает притяжению. Задача (3) решается в предположении, что в объеме жидкости электропотенциал $\phi(\vec{r})$ является гармонической функцией координат [5]. В задаче (2) электропотенциал описывается не гармонической функцией $\Delta \phi = 0$, а, во всяком случае, линеаризованным уравнением Пуассона—Дебая $\lambda^2 \Delta \phi = \phi$. В условиях (1) длина λ формируется за счет собственных ресурсов стабилизирующего электролита.

В данной работе результаты [4] обобщаются на случай $R_0 \gg \lambda_0 \gg a_0$. В этих условиях предсказания (2) для области $z \to 0$ нуждаются в уточнениях. Имеет смысл отказаться от универсальности предсказаний (2), рассматривая отдельно варианты с притяжением и отталкиванием. При этом возникают сопутствующие упрощения, дающие возможность модифицировать постановку задачи. Ниже речь идет о заряженных комплексах с $R_0 \gg \lambda_0 \gg a_0$, на границе электролит/металл.

DLVO-коллоиды на границе металл/электролит

Очевидное упрощение общей задачи (2) для DLVO-коллоида вблизи границы металл/электролит связано с возможностью ограничиться иссле-

дованием его стационарных кулоновских свойств в условиях, когда поверхность заряженного ядра касается границы z=0. Ясно, что при этом задача Вагнера, Онсагера, Самараса [3, 4] не содержит расходимостей в зависимости эффекта притяжения от текущего положения центра коллоида относительно плоскости z=0. Она сводится к определению энергии связи E_{Θ} между коллоидом и границей раздела. Эта энергия определяет детали наблюдаемого процесса адсорбции DLVO-коллоидов из объема разбавленного раствора на поверхность металл—электролит (см. к примеру [6-8]).

А. В контактных условиях эффективный заряд комплекса Q_* схематически определяется объемом U_* сегмента, возникающего сечением шарового объема экранирующей шубы плоскостью $z=\lambda_0$, проходящей через точку касания жесткой части DLVO-комплекса плоскости z=0. Хорда сегмента a и величина U_* определяются формулами

$$a = \sqrt{2\lambda_0 R_0 + \lambda_0^2}, \quad U_* = \pi \lambda_0^2 \left[R_0 + \frac{2\lambda_0}{3} \right].$$
 (4)

Роль высоты шарового сегмента играет длина λ_0 . Детали геометрии вознкающего комплекса см. рис. 1б.

В терминах (4) величина eZ^* , имеющая смысл эффективного заряда для DLVO-диполя, возникающего на границе металл/электролит, выглядит так:

$$Z^* \simeq \frac{U_*}{4\pi R_0^2 \lambda_0} = \frac{\lambda_0}{4R_0} Z, \quad 4\pi R_0^2 \lambda_0 n_0 = Z, \quad R_0 \gg \lambda_0.$$
 (5)

Здесь n_0 — эффективная плотность противоионов (ионы собственного электролита, принимающие участие в экранировке центрального заряда) в дебаевской шубе. В определении величины Z^* объем U_* отнесен к объему $V=4\pi R_0^2 \lambda_0$, который содержит весь заряд противоионов, экранирующий затравку Q=Ze.

Энергия локализации E_{\odot} шарового коллоида на плоскости z=0 с точечным зарядом $Q_*=Z^*e$ в центре затравочной сферы радиуса R_0 оценивается выражением

$$E_{\odot} \simeq -\frac{Q_*^2}{2R_0}, \ Q_* = Z^*e.$$
 (6)

Эта энергия играет роль отрицательного поверхностного уровня, на котором адсорбируются объемные коллоиды плотности n_{\odot} , заполняющие объем кюветы с коллоидным раствором.

Для оценки заполнения уровня E_{\odot} используем энергетический язык. Имеем

$$\mu_{\rm s} = \mu_{\rm bulk},\tag{7}$$

где μ_s и μ_{bulk} — химические потенциалы двух фракций коллоидного электролита.

В классической статистике

$$\mu_{\rm s} = E_{\odot} + T \ln P_{\rm s}, \quad \mu_{\rm bulk} = T \ln P_{\rm bulk},$$
 (8)

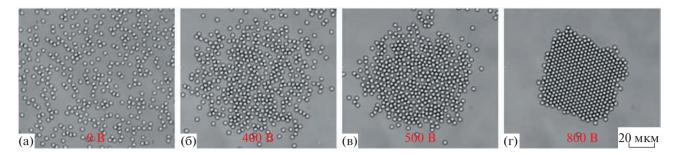
где $P_{\rm bulk}$ — осмотическая добавка к давлению в объеме жидкости. $P_{\rm s}$ — аналогичная величина для поверхностной фракции коллоидов на границе металл/электролит.

Полагая оба газа идеальными (идеальность в данном случае означает выполнение условия (1)), можно свести определения (7), (8) к виду:

$$N_{\odot} \simeq n_{\odot} R_0 \exp\left(-\frac{E_{\odot}}{T}\right).$$
 (9)

Энергия E_{\odot} из (9) отрицательна, так что активационная экспонента в (9) положительна.

Нормируя отношение фракций требованием


$$N = N_{\odot}S + n_{\odot}SL = \text{const}, \tag{10}$$

можно проследить за деталями заполнения коллоидами уровня E_{\odot} (9), начиная с малых значений параметра N (как это происходит в начале второй стадии развития эффекта Зеебека на кол-

лоидных частицах в работе [8]). Наблюдаемый при этом эффект насыщения $N_{\odot}(N) \to \text{const}$ содержится в формулах (7)—(9). Здесь N — полное число коллоидов, введенных в разбавленный раствор. Это число сохраняет свое значение в процессе взаимной подстройки двух коллоидных фракций, n_{\odot} — объемная плотность коллоидов, S — площадь границы металл—электролит, L — объемная глубина кюветы с электролитом.

Еще олной, качественно важной леталью взаимодействие (6) отличается от других сопутствующих, энергетических вкладов в задачах об адсорбции с участием нейтральных атомов (например, силы притяжения Ван-дер-Ваальса [5]). DLVOвзаимодействие (6), имея знак притяжения по нормали к поверхности металла, оказывается положительным (имеющим знак отталкивания) вдоль границы металл/электролит. Это свойство, наглядно присутствующее в модели (4)-6) (отталкивание между соседними диполями, направленными по нормали к границе металл/электролит), иллюстрируется экспериментальными данными [9] для 2D-системы коллоидов на границе металл/электролит при наличии азимутального электрического поля, вращающего коллоидный ансамбль в контактной плоскости. Возникающее полевое давление, действующее на систему коллоидов в радиальном направлении (полевая разновидность давления Бернулли, действующего в окрестности оси вихревой нити на примесные частицы [12, 13]) обратимо сжимает ансамбль частиц, исходно взаимодействующих между собой дипольными силами со знаком отталкивания (см. рис. 2 из [9]).

В. Содержание геометрической модели (4)— (6), определяющей степень заряженности DLVOколлоида на границе металл/электролит, стимулирует развитие исследований еще в одном, актуальном для *DLVO*-коллоидов направлении. Речь о существующем 3-параметрическом (R_0, Z, λ_0) описании свойств этих образований: наличии затравочного, заряженного ядра R_0 и дебаевской "шубы" λ_0 , экранирующей затравочный заряд $eZ \gg e$ на больших расстояниях от центра DLVO-коллоида. При этом свойства экранирующей части задачи трактуются с привлечением линеаризованного уравнения Пуассона-Дебая, $\lambda_0^2 \Delta \varphi = \varphi$, что справедливо, если в зоне экранирования $\frac{e\phi(R_0)}{T} \le 1$. Желание линеаризовать задачу связывает между собой тройку параметров. В самом деле, на поверхности $r = R_0$ потенциал $\varphi(R_0)$ имеет оценку $\phi(R_0) \simeq \frac{eZ}{\varepsilon_{\rm ad}R_0}$ (для ориентации в качестве диэлектрической постоянной ε_{aa} электро-

Рис. 2. 2D-система коллоидов на границе металл/электролит при наличии азимутального электрического поля, вращающего коллоидный ансамбль в контактной плоскости.

лита используются параметры воды, расстояние r отсчитывается от центра коллоида), так что

$$e\phi(R_0)\simeq rac{e^2Z}{arepsilon_{
m aq}R_0}\leq T,$$
или $Z\leq Z_{
m crit},\ Z_{
m crit}=rac{arepsilon_{
m aq}R_0T}{e^2}.$

Но требование (11) не является необходимым в формировании экранирующего облака противоионов. Уравнение типа Пуассона-Дебая существует и в области $\frac{e\phi(R_0)}{T} \ge 1$. Правда, здесь оно становится нелинейным. Специальная область с такими свойствами вокруг центра DLVO-кластера именуется Stern layer [14]. Различные способы описания этого слоя содержатся в ряде известных публикациий [15–18]. При этом структура кластера оказывается двухслойной. Его затравочная часть радиуса R_{00} содержит заряд с числом $Z \ge Z_{\rm crit}$. В сферической области $R_{00} \le r \le R_0$ возникает экранирующий Stern layer, частично снижающий значения электропотенциала до уровня (11). Формальные способы достижения частичной экранровки обсуждаются в [15-18]. И, далее, в области $R_0 \le r \le \infty$ — классическая дебаевская область с распределением электропотенциала из уравнения $\lambda_0^2 \Delta \phi = \phi$.

Согласно [18], зона Стерна $\Delta R = (R_0 - R_{00})$ имеет структуру кулоновского кристалла с определенными упруго-пластическими свойствами. По этой причине контакт DLVO-коллоида с границей металл/электролита осуществляется в два этапа. На первой стадии он, согласно (6), касается границы своей сферой радиуса R_0 . Окрестность этого касания подвержена сильной нагрузке в нормальном направлении. Как следствие, кулоновский кристалл в зоне контакта деформируется сначала упруго (контактная задача Герца [19]), а затем релаксирует диффузионно-вязким способом [20] до глубины ΔR , отвечающей контакту DLVO-коллоида своей затравочной сферой R_{00} с границей металл/электролит. Ситуация напоми-

нает поведение протонов H_+ , возникающих в распаде $H_2O \leftrightarrow (H_+ + OH_-)$. Протон как положительная составляющая этого обратимого распада через некое, характерное время превращается в полярон под названием "гидроксоний" (см [21]).

ЗАКЛЮЧЕНИЕ

Резюмируя, в работе обсуждается механизм образования конечной степени заряженности нейтральных в объеме DLVO-коллоидов при их сближении с границей металл/электролит. Природа этого явления объяснена в работах Вагнера— Онсагера—Самараса [3, 4], исходно имеющая отношение к поведению точечных ионов вблизи металлической границы. Задача заключается в адаптации результатов [3, 4] к структурным свойствам DLVO-коллоидов, имеющих конечные размеры $R_0 \gg \lambda_0 \gg a_0$. Необходимые обобщения результатов [3, 4] для реальных *DLVO*-структур выполнены в серии работ Ошимы. Обзор этой, в основном численной деятельности представлен в списке литературы ссылкой [10]. Аналитические результаты, хорошо коррелирующие с расчетной картиной происходящего, содержатся в [11] и данной работе. Отмечены показательные примеры наличия коллективных эффектов в поведении двумерных *DLVO*-коллоидных сред (см. данные [9] и рис. 2 данной работы). Обсуждаются условия существования Stern layer (см. рис. 1a) и признаки его проявления в экспериментах с DLVO-коллоидами на границе металл/электролит.

КОНФЛИКТ ИНТЕРЕСОВ

Конфликт интересов отсутствует.

СПИСОК ЛИТЕРАТУРЫ

- 1. Дерягин, Б., Ландау, Л. *Теория устойчивости сильно заряженных лиофобных золей и слипания сильно заряженных частиц в растворах электролитов. ЖЭТФ*. 1941. Т. 11. 802 с.
- 2. Verwey, E. and Overbeek, J. *Theory of the Stability of Lyophobic Colloids*, Amsterdam: Elsevier, 1948, p. 631.

- 3. Wagner, C., Die Oberflächenspannung verdünnter Elektrolytlösungen, *Phys. Z.*, 1924, vol. 25, p. 474.
- Onsager, L. and Samaras, N., The Surface Tension of Debye—Hückel Electrolytes. *J. Chem. Phys.* 1934, vol. 2, p. 528.
- 5. Ландау, Л., Лифшиц, Е. Электродинамика сплошных сред. М.: Физматгиз, 1959, 532 с.
- Yeh, S., Saul, M., and Shraiman, B., Assembly of ordered colloidal aggregates by electric-field-induced fluid flow, *Nature (London)*, 1997, vol. 386, p. 57.
- 7. Haywand, R., Saville, D., and Aksay, I., Electrophoretic assembly of colloidal crystals with optically tunable micropatterns, *Nature (London)*, 2000, vol. 404, p. 56.
- 8. Nadal, F., Arqoul, F., et al, Electrically induced interactions between colloid particles in the vicinity of conducting plan, *PRE*, 2002, vol. 65, 061409.
- 9. Yakovlev, E., Komarov, K., Zaytsev, K., et al, Tunable two-dimensional assembly of colloidal particles in rotating electric fields, *Scientific Reports*, 2017, vol. 7, 13727.
- Ohshima, H., Electrostatic Interaction between a Sphere and a Planar Surface: Generalization of Point-Charge/Surface Image Interaction to Particle/Surface Image Interaction, *J. Colloid and Interface Sci.*, 1998, vol. 198, p. 42.

- 11. Chikina, I., Nakamae, S., Shikin, V., and Varlamov, A., Charged Colloids at the Metal—Electrolyte Interface, *Colloids and Interfaces*, 2022, vol. 6, p. 25.
- 12. Chikina, I., Nakamae, S., Shikin, V., and Varlamov, A., Two-Stage Seebeck Effect in Charged Colloidal Suspensions, *Entropy*, 2021, vol. 23(2), p. 150.
- Ландау, Л., Лифшиц, Е. Гидродинамика, М.: Наука, 1958, 730 с.
- 14. Kirby, B. and Hasselbrink, E., Zeta potential of microfludic substrates, *Electrophoresis*, 2004, vol. 25, p. 187.
- 15. Gouy, G., Sur la constitution de la charge électrique à la surface d'un électrolyte, *J. Phys. (France)*, 1910, vol. 9, p. 457; Sur la fonction electrocapillare, *Ann. Phys. (Lepzig)*, 1917, vol. 7, p. 127.
- Chapman, D., A Contribution on the theory of Electrocapillarity, *Phil. Mag.*, 1913, vol. 25, p. 475.
- Франк-Каменецкий, М., Аншелевич, В., Лукашин, А. Полиэлектролитная модель ДНК. УФН. 1987. Т. 151. С. 595.
- 18. Grossberg, A., Nguyen, T., and Shklovskii, B., The physics of charge inversion in chemical and biological systems, *Rev. Mod. Phys.*, 2002, vol. 74, p. 329.
- 19. Ландау, Л., Лифшиц, Е. *Теория упругости*. М.: Наука, 1955. 202 с.
- 20. Лифшиц, И., Шикин, В. О теории диффузно-вязкого течения твердых тел. *ФТТ*. 1964. Т. 6. С. 2780.
- Robinson, R. and Stokes, R., Electrolyte Solutions, London: Butterworths Scientific Publ., 1959.