RAS Chemistry & Material ScienceЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

The effect of TiO2 nanoparticles and the “liquid phase therapy” on the resistance of the interphase lithium/polymer electrolyte with the introduction of ionic liquid

PII
10.31857/S0424857024100042-1
DOI
10.31857/S0424857024100042
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 10
Pages
706-711
Abstract
The effect of treating a metal lithium surface with 1 M LiN(CF3SO2)2 solution in 1,3-dioxolane/1,2-dimethoxyethane (2:1) mixture on the resistance of the lithium/polymer and lithium/nanocomposite electrolyte based on the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate was studied. It has been shown that “liquid-phase therapy” reduces the resistance at the Li/electrolyte interface by 2.5 times at room temperature and expands the operating temperature range to –30°C. The introduction of TiO2 nanoparticles into the polymer electrolyte, along with “liquid-phase therapy” of both the cathode and the Li-anode, provides a high and stable discharge capacity of the Li//LiFePO4 battery for 100 charge-discharge cycles.
Keywords
литиевый анод LiFePO4-катод полимерный электролит тетрафторборат 1-этил-3-метилимидазолия наночастицы TiO2 электрохимический импеданс заряд-разрядные характеристики
Date of publication
25.10.2024
Year of publication
2024
Number of purchasers
0
Views
34

References

  1. 1. Pei, Y., Zhang, Y., Ma, J., Fan, M., Zhang, S., and Wang, J., Ionic Liquids for Advanced Materials, Mater. Today Nano, 2022, vol. 17, p. 100159.
  2. 2. Dong, K., Liu, X., Dong, H., Zhang, X., and Zhang, S., Multiscale Studies on Ionic Liquids, Chem. Rev., 2017, vol. 117, p. 6636.
  3. 3. Chen, N., Zhang, H., Li, L., Chen, R., and Guo, S., Ionogel Electrolytes for High‐Performance Lithium Batteries: A Review, Adv. Energy Mater., 2018, vol. 8, p. 1702675.
  4. 4. Watanabe, M., Thomas, M.L., Zhang, S., Ueno, K., Yasuda, T., and Dokko, K., Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices, Chem. Rev., 2017, vol. 117, p. 7190.
  5. 5. Yu, L. and Chen, G.Z., Ionic Liquid-Based Electrolytes for Supercapacitor and Supercapattery, Front. Chem., 2019, vol. 7, p. 272.
  6. 6. Tripathi, A.K., Ionic Liquid–Based Solid Electrolytes (Ionogels) for Application in Rechargeable Lithium Battery, Mater. Today Energy, 2021, vol. 20, p. 100643.
  7. 7. Correia, D.M., Fernandes, L.C., Martins, P.M., García‐Astrain, C., Costa, C.M., Reguera, J., and Lanceros‐Méndez, S., Ionic Liquid–Polymer Composites: A New Platform for Multifunctional Applications, Adv. Funct. Mater., 2020, vol. 30, p. 1909736.
  8. 8. Qiu, C., Li, Z., Pan, J., Hong, Y., Li, J., Lin, Y., Shi, K., and Liu, Q., Designing Stable Electrode Interfaces from a Pyrrolidine-Based Electrolyte for Improving LiNi0.8 Co 0.1Mn0.1 O 2 Batteries, Ind. Eng. Chem. Res., 2022, vol. 61, p. 14173.
  9. 9. del Bosque, A., Muñoz, B.K., Sánchez, M., and Ureña, A., Thermomechanically Robust Ceramic/Polymer Nanocomposites Modified with Ionic Liquid for Hybrid Polymer Electrolyte Applications, ACS Appl. Energy Mater., 2022, vol. 5, p. 4247.
  10. 10. Li, M., Liao, Y., Liu, Q., Xu, J., Sun, P., Shi, H., and Li, W., Application of the Imidazolium Ionic Liquid Based Nano-Particle Decorated Gel Polymer Electrolyte for High Safety Lithium Ion Battery, Electrochim. Acta, 2018, vol. 284, p. 188.
  11. 11. Khatmullina, K.G., Slesarenko, N. A., Chernyak, A.V., Baymuratova, G.R., Yudina, A.V., Berezin, M.P., Tulibaeva, G.Z., Slesarenko, A.A., Shestakov, A.F., and Yarmolenko, O.V., New Network Polymer Electrolytes Based on Ionic Liquid and SiO2 Nanoparticles for Energy Storage Systems, Membranes, 2023, vol. 13, p. 548.
  12. 12. Slesarenko, N.A., Chernyak, A.V., Khatmullina, K.G., Baymuratova, G.R., Yudina, A.V., Tulibaeva, G.Z., Shestakov, A.F., Volkov, V.I., and Yarmolenko, O.V., Nanocomposite Polymer Gel Electrolyte Based on TiO2 Nanoparticles for Lithium Batteries, Membranes, 2023, vol. 13, p. 776.
  13. 13. Баймуратова, Г.Р., Хатмуллина, К.Г., Юдина, А.В., Ярмоленко, О.В. Дизайн твердотельного литиевого аккумулятора c LiFePO4-катодом и полимерным гель- электролитом с наночастицами диоксида кремния. Электрохимия. 2022. Т. 58. С. 188. [Baymuratova, G.R., Khatmullina, K.G., Yudina, A.V., and Yarmolenko, O.V., Design of a Solid-State Lithium Battery Based on LiFePO4 Cathode and Polymer Gel Electrolyte with Silicon Dioxide Nanoparticles, Russ. J. Electrochem., 2022, vol. 58, p. 329.]
  14. 14. Wu, J.-Y., Ling, S.-G., Yang, Q., Li, H., Xu, X.-X., and Chen, L.-Q., Forming solid electrolyte interphase in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3 – polypropylene (PP) based separator for Li-ion batteries, Chin. Phys. B, 2016, vol. 25, A. 078204.
  15. 15. Gao, H., Xue, L., Xin, S., Park, K., and Goodenough, J.B., A plastic-crystal electrolyte interphase for all-solid-state sodium batteries, Angew. Chem. Int. Ed., 2017, vol. 56, p. 5541.
  16. 16. Basile, A., Bhatt, A., and O’Mullane, A., Stabilizing lithium metal using ionic liquids for long-lived batteries, Nat. Commun., 2016, vol. 7, Article no. ncomms 11794.
  17. 17. Budi, A., Basile, A., Opletal, G., Hollenkamp, A.F., Best, A.S., Rees, R.J., Bhatt, A.I., O’Mullane, A.P., and Russo, S.P., Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide, J. Phys. Chem. C, 2012, vol. 116, p. 19789.
  18. 18. Ярмоленко, О.В., Юдина, А.В., Игнатова, А.А., Шувалова, Н.И., Мартыненко, В.М., Богданова, Л.М., Черняк, А.В., Забродин, В.А., Волков, В.И. Новые полимерные электролиты состава диакрилат полиэтиленгликоля – LiBF4 – тетрафторборат 1-этил-3-метилимидазолия с введением алкиленкарбонатов. Известия АН. Сер. хим. 2015. Т. 64. С. 2505. [Yarmolenko, O.V., Yudina, A.V., Ignatova, A.A., Shuvalova, N.I., Martynenko, V.M., Bogdanova, L.M., Chernyak, A.V., Zabrodin, V.A., and Volkov, V.I., New polymer electrolytes based on polyethylene glycol diacrylate–LiBF4–1-ethyl-3-methylimidazolium tetrafluoroborate with the introduction of alkylene carbonates, Russ. Chem. Bull. (Int. Ed.), 2015, vol. 64, p. 2505.]
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library