- Код статьи
- 10.31857/S0424857024090018-1
- DOI
- 10.31857/S0424857024090018
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 60 / Номер выпуска 9
- Страницы
- 591-604
- Аннотация
- В работе исследовались электрокатализаторы на основе платинированных оксидов TiO2(Ru) с разным содержанием рутения для применения в качестве рабочего электрода твердотельных потенциометрических сенсоров на H2 и CO. Увеличение содержания рутения не влияет на размер частиц платины, но снижает ее содержание в металлическом состоянии. В работе представлены данные рентгенофазового и рентгенофлуоресцентного анализов и сканирующей электронной микроскопии. Полученные электрокатализаторы исследовались в качестве материала рабочего электрода в сенсорах водорода и монооксида углерода с концентрациями в потоке воздуха от 1 до 50 000 ppm. На характеристики сенсоров влияют состав оксидного носителя и его структура. Для практического применения рекомендованы электрокатализаторы со структурой рутила, содержание рутения определяется анализируемым диапазоном концентраций CO.
- Ключевые слова
- потенциометрические газовые сенсоры водородные сенсоры CO-сенсоры платинированный оксид титана электрокатализаторы оксидные носители
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 1
Библиография
- 1. Филиппов, С.П., Ярославцев, А.Б. Водородная энергетика: перспективы развития и материалы. Успехи химии. 2021. Т. 90. С. 627. [Filippov, S.P. and Yaroslavtsev, A.B., Hydrogen energy: development prospects and materials, Russ. Chem. Rev., 2021, vol. 90, p. 627.]
- 2. Yukesh Kannah, R., Kavitha, S., Preethi, Parthiba Karthikeyan, O., Kumar, G., Dai-Viet, N.V., and Rajesh Banu, J., Techno-economic assessment of various hydrogen production methods – A review, Bioresour. Technol., 2021, vol. 319, p. 124175.
- 3. Бельмесов, А.А., Баранов, А.А., Левченко, А.В. Анодные электрокатализаторы для топливных элементов на основе Pt/ Ti 1-x Ru x O 2 ). Электрохимия. 2018. Т. 54. С. 570. [Belmesov, A.A., Baranov, A.A., and Levchenko, A.V., Anodic electrocatalysts for fuel cells based on Pt/ Ti 1-x Ru x O 2 , Russ. J. Electrochem., 2018, vol. 54, p. 493.]
- 4. Goto, T., Hyodo, T., Ueda, T., Kamada, K., Kaneyasu, K., and Shimizu, Y., CO-sensing properties of potentiometric gas sensors using an anion-conducting polymer electrolyte and Au-loaded metal oxide electrodes, Electrochim. Acta, 2015, vol. 166, p. 232.
- 5. Hyodo, T., Goto, T., Ueda, T., Kaneyasu, K., and Shimizu, Y., Potentiometric carbon monoxide sensors using an anion-conducting polymer electrolyte and Au-loaded SnO 2 electrodes , J. Electrochem. Soc., 2016, vol. 163, p. B300.
- 6. Hyodo, T., Takamori, M., Goto, T., Ueda, T., and Shimizu, Y., Potentiometric CO sensors using anion-conducting polymer electrolyte: Effects of the kinds of noble metal-loaded metal oxides as sensing-electrode materials on CO-sensing properties, Sensors Actuators, B Chem., 2019, vol. 287, p. 42.
- 7. Formo, E., Peng, Z., Lee, E., Lu, X., Yang, H., and Xia, Y., Direct Oxidation of methanol on Pt nanostructures supported on electrospun nanofibers of anatase, J. Phys. Chem. C, 2008, vol. 112, p. 9970.
- 8. Ahmad, W., Park, E., Lee, H., Kim, J.Y., Kim, B.C., Jurng, J., and Oh, Y., Defective domain control of TiO 2 support in Pt/ TiO 2 for room temperature formaldehyde (HCHO) remediation, Appl. Surf. Sci., 2021, vol. 538, p. 147504.
- 9. Wang, C., Yang, J., Li, J., Luo, C., Xu, X., and Qian, F., Solid-state electrochemical hydrogen sensors: A review, Int. J. Hydrogen Energy, 2023, vol. 48, p. 31377.
- 10. Liu, X., Chen, J., Liu, G., Zhang, L., Zhang, H., and Yi, B., Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt / TiO 2 / C catalysts, J. Power Sources, 2010, vol. 195, p. 4098.
- 11. Chhina, H., Campbell, S., and Kesler, O., Ex situ Evaluation of tungsten oxide as a catalyst support for PEMFCs, J. Electrochem. Soc., 2007, vol. 154, p. B533.
- 12. Mahajan, S. and Jagtap, S., Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review, Appl. Mater. Today, 2020, vol. 18, p. 100483.
- 13. Lin, R., Cao, C., Zhang, H., Huang, H., and Ma, J., Electro-catalytic activity of enhanced CO tolerant cerium-promoted Pt/C catalyst for PEM fuel cell anode, Int. J. Hydrogen Energy, 2012, vol. 37, p. 4648.
- 14. Spasojević, M., Marković, D., and Spasojević, M., Mathematical model of electrocatalysis of methanol oxidation at the mixture of nanocrystals of platinum and ruthenium dioxide, Rev. Roum. Chim., 2022, vol. 67, p. 473.
- 15. Gurrola, M.P., Guerra-Balcázar, M., Álvarez-Contreras, L., Nava, R., Ledesma-García, J., and Arriaga, L.G., High surface electrochemical support based on Sb-doped SnO2, J. Power Sources, 2013, vol. 243, p. 826.
- 16. Leonova, L., Shmygleva, L., Ukshe, A., Levchenko, A., Chub, A., and Dobrovolsky, Y., Solid-state hydrogen sensors based on calixarene—12-phosphatotungstic acid composite electrolytes, Sensors Actuators B Chem., 2016, vol. 230, p. 470.
- 17. Бельмесов, А.А., Левченко, А.В., Паланкоев, Т.А., Леонова, Л.С., Укше, А.Е., Чикин, А.И., Букун, Н.Г. Электрохимические сенсоры на основе платинированного Ti 1-x Ru x O 2 . Электрохимия. 2013. Т. 49. С. 926. [Bel’mesov, A.A., Levchenko, A.V., Palankoev, T.A., Leonova, L.S., Ukshe, A.E., Chikin, A.I., and Bukun, N.G., Electrochemical sensors based on platinized Ti 1-x Ru x O 2 , Russ. J. Electrochem., 2013, vol. 49, p. 831.]
- 18. Colomer, M.T. and Jurado, J.R., Structural, microstructural, and electrical transport properties of TiO 2 − RuO 2 ceramic materials obtained by polymeric sol−gel route, Chem. Mater., 2000, vol. 12, p. 923.
- 19. Фролова, Л.А., Добровольский, Ю.А. Платиновые электрокатализаторы на основе оксидных носителей для водородных и метанольных топливных элементов. Изв. Акад. Наук, Сер. Хим., 2011. Т. 60. С. 1076. [Frolova, L.A. and Dobrovolsky, Y.A., Platinum electrocatalysts based on oxide supports for hydrogen and methanol fuel cells, Russ. Chem. Bull., 2011, vol. 60, p. 1101.]
- 20. Yin, Y., Huang, C., Luo, X., and Xu, B., Iron behavior during the continuous phase transition of iron-doped titanium dioxide determined via high-temperature in-situ X-ray diffraction, rietveld refinement, and density functional theory studies, J. Mater. Res. Technol., 2023, vol. 23, p. 2426.
- 21. Ferreira, H.S., Ferreira, H.S., da Silva, M.V.S., da Rocha, M. da G.C., Bargiela, P., Rangel, M. do C., Eguiluz, K.I.B., and Salazar-Banda, G.R., Improved electrocatalytic activity of Pt supported onto Fe-doped TiO 2 toward ethanol oxidation in acid media, Mater. Chem. Phys., 2020, vol. 245, p. 122753.
- 22. Moradi, M., Khorasheh, F., and Larimi, A., Pt nanoparticles decorated Bi-doped TiO 2 as an efficient photocatalyst for CO 2 photo-reduction into CH 4 , Sol. Energy, 2020, vol. 211, p. 100.
- 23. Wetchakun, N., Incessungvorn, B., Wetchakun, K., and Phanichphant, S., Influence of calcination temperature on anatase to rutile phase transformation in TiO 2 nanoparticles synthesized by the modified sol–gel method, Mater. Lett., 2012, vol. 82, p. 195.
- 24. Зюбин, А.С., Зюбина, Т.С., Добровольский, Ю.А., Бельмесов, А.А., Волохов, В.М. Наночастицы платины на различных типах поверхности диоксида титана: квантово-химическое моделирование. Журн. неорган. химии. 2014. Т. 59. С. 1038. [Zyubin, A.S., Zyubina, T.S., Dobrovol’skii, Y.A., Bel’mesov, A.A., and Volokhov, V.M., Platinum nanoparticles on different types of titanium dioxide surface: A quantum-chemical modeling, Russ. J. Inorg. Chem., 2014, vol. 59, p. 816.]
- 25. Герасимова, Е.В., Букун, Н.Г., Добровольский, Ю.А. Электрокаталитические свойства катализаторов на основе углеродных нановолокон с различным содержанием платины. Изв. АН. Сер. Хим. 2011. Т. 60. С. 1021. [Gerasimova, E. V., Bukun, N.G., and Dobrovolsky, Y.A., Electrocatalytic properties of the catalysts based on carbon nanofibers with various platinum contents, Russ. Chem. Bull., 2011, vol. 60, p. 1045.]
- 26. Jacob, K.T. and Subramanian, R., Phase Diagram for the System RuO 2 - TiO 2 in air, J. Phase Equilibria Diffus., 2008, vol. 29, p. 136.
- 27. Volodin, A.A., Belmesov, A.A., Murzin, V.B., Fursikov, p. V., Zolotarenko, A.D., and Tarasov, B.P., Electro-conductive composites based on titania and carbon nanotubes, Inorg. Mater., 2013, vol. 49, p. 656.
- 28. Treglazov, I., Leonova, L., Dobrovolsky, Y., Ryabov, A., Vakulenko, A., and Vassiliev, S., Electrocatalytic effects in gas sensors based on low-temperature superprotonics, Sensors Actuators B Chem., 2005, vol. 106, p. 164.
- 29. Shmygleva, L.V., Chub, A.V., and Leonova, L.S., Solid-state potentiometric sensors with platinized SnO2(Sb) and calixarene/phosphotungstic acid composite electrolyte selective to CO in hydrogen-air atmosphere, Sensors Actuators B Chem., 2021, vol. 349, p. 130823.
- 30. Шмыглева, Л.В., Старков, А.В., Леонова, Л.С. Влияние состава материала рабочего электрода на основе Pt/ SnO 2 (Sb) на свойства сенсоров на водород и монооксид углерода. Электрохимия. 2023. Т. 59. С. 333. [Shmygleva, L.V., Starkov, A.V., and Leonova, L.S., The Effect of the working electrode material based on Pt/ SnO 2 (Sb) on the properties of hydrogen and carbon-monoxide sensors, Russ. J. Electrochem., 2023, vol. 59. p. 441.]
- 31. Укше, Е.А., Леонова, Л.С. Потенциометрический водородный сенсор с протонным твердым электролитом. Электрохимия. 2011. Т. 92. С. 1427. [Ukshe, E. and Leonova, L., Potentiometric hydrogen sensors with proton conducting solid electrolytes, Sov. Electrochem., 1992, vol. 28, p. 1166.]
- 32. Левченко, А.В., Укше, А.Е., Федотова, А.А. Кинетика процессов на границе H 3 PW 12 O 40 /Pt, H 2 в зависимости от содержания платины на электроде. Электрохимия. 2011. Т. 46. С. 776. [Levchenko, A. V., Ukshe, A.E., and Fedotova, A.A., Kinetics of processes occurring at a H 3 PW 12 O 40 /Pt, H 2 interface depending on the platinum content on the electrode, Russ. J. Electrochem., 2011, vol. 47, p. 726.]
- 33. Gonzalez Szwacki, N., Fabrykiewicz, P., Sosnowska, I., Fauth, F., Suard, E., and Przeniosło, R., Orthorhombic symmetry and anisotropic properties of rutile TiO 2 , J. Phys. Chem. C, 2023, vol. 127, p. 19240.
- 34. Arblaster, J.W., Crystallographic Properties of Ruthenium, Platin. Met. Rev., 1997, vol. 41, p. 12.
- 35. Vovk, E.I., Kalinkin, A. V., Smirnov, M.Y., Klembovskii, I.O., and Bukhtiyarov, V.I., XPS study of stability and reactivity of oxidized Pt nanoparticles supported on TiO 2 , J. Phys. Chem. C, 2017, vol. 121, p. 17297.
- 36. Tiernan, M.J. and Finlayson, O.E., Effects of ceria on the combustion activity and surface properties of Pt/ Al 2 O 3 catalysts, Appl. Catal. B Environ., 1998, vol. 19, p. 23.
- 37. Kozlova, E.A., Lyubina, T.P., Nasalevich, M.A., Vorontsov, A.V., Miller, A.V., Kaichev, V.V., and Parmon, V.N., Influence of the method of platinum deposition on activity and stability of Pt/ TiO 2 photocatalysts in the photocatalytic oxidation of dimethyl methylphosphonate, Catal. Commun., 2011, vol. 12, p. 597.
- 38. Smirnov, M.Y., Kalinkin, A. V., and Bukhtiyarov, V.I., X-ray photoelectron spectroscopic study of the interaction of supported metal catalysts with NO x , J. Struct. Chem., 2007, vol. 48, p. 1053.
- 39. Vikrant, K., Weon, S., Kim, K.-H., and Sillanpää, M., Platinized titanium dioxide (Pt/ TiO 2 ) as a multi-functional catalyst for thermocatalysis, photocatalysis, and photothermal catalysis for removing air pollutants, Appl. Mater. Today, 2021, vol. 23, p. 100993.
- 40. Zanfoni, N., Avril, L., Imhoff, L., Domenichini, B., and Bourgeois, S., Direct liquid injection chemical vapor deposition of platinum doped cerium oxide thin films, Thin Solid Films, 2015, vol. 589, p. 246.
- 41. Kibis, L.S., Svintsitskiy, D.A., Stadnichenko, A.I., Slavinskaya, E.M., Romanenko, A. V., Fedorova, E.A., Stonkus, O.A., Svetlichnyi, V.A., Fakhrutdinova, E.D., Vorokhta, M., Šmíd, B., Doronkin, D.E., Marchuk, V., Grunwaldt, J.-D., and Boronin, A.I., In situ probing of Pt/ TiO 2 activity in low-temperature ammonia oxidation, Catal. Sci. Technol., 2021, vol. 11, p. 250.
- 42. Stakheev, A.Y., Shulga, Y.M., Gaidai, N.A., Telegina, N.S., Tkachenko, O.P., Kustov, L.M., and Minachev, K.M., New evidence for the electronic nature of the strong metal-support interaction effect over a Pt/ TiO 2 hydrogenation catalyst, Mendeleev Commun., 2001, vol. 11, p. 186.
- 43. Colmenares, J.C., Magdziarz, A., Aramendia, M.A., Marinas, A., Marinas, J.M., Urbano, F.J., and Navio, J.A., Influence of the strong metal support interaction effect (SMSI) of Pt/ TiO 2 and Pd/ TiO 2 systems in the photocatalytic biohydrogen production from glucose solution, Catal. Commun., 2011, vol. 16, p. 1.
- 44. Jiao, J., Wei, Y., Chi, K., Zhao, Z., Duan, A., Liu, J., Jiang, G., Wang, Y., Wang, X., Han, C., et al., Platinum nanoparticles supported on TiO 2 photonic crystals as highly active photocatalyst for the reduction of CO 2 in the presence of water, Energy Technol., 2017, vol. 5, p. 877.
- 45. Huang, H. and Leung, D.Y.C., Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature, J. Catal., 2011, vol. 280, p. 60.
- 46. Hyodo, T., Goto, T., Takamori, M., Ueda, T., and Shimizu, Y., Effects of Pt loading onto SnO 2 electrodes on CO-sensing properties and mechanism of potentiometric gas sensors utilizing an anion-conducting polymer electrolyte, Sensors Actuators B Chem., 2019, vol. 300, p. 127041.
- 47. Hyodo, T., Ishibashi, C., Matsuo, K., Kaneyasu, K., Yanagi, H., and Shimizu, Y., CO and CO2 sensing properties of electrochemical gas sensors using an anion-conducting polymer as an electrolyte, Electrochim. Acta, 2012, vol. 82, p. 19.
- 48. Ramaiyan, K.P. and Mukundan, R., Editors’ choice—review—recent advances in mixed potential sensors, J. Electrochem. Soc., 2020, vol. 167, p. 037547.
- 49. Dobrovolsky, Y., Leonova, L., and Vakulenko, A., Thermodynamic equilibria and kinetic reversibility of the solid electrolyte/electron conductor/gas boundary at low temperature, Solid State Ionics, 1996, vol. 86–88, p. 1017.
- 50. Ahmad Fauzi, A.S., Hamidah, N.L., Sato, S., Shintani, M., Putri, G.K., Kitamura, S., Hatakeyama, K., Quitain, A.T., and Kida, T., Carbon-based potentiometric hydrogen sensor using a proton conducting graphene oxide membrane coupled with a WO3 sensing electrode, Sensors Actuators B Chem., 2020, vol. 323, p. 128678.
- 51. Bouchet, R., Siebert, E., and Vitter, G., Polybenzimidazole-based hydrogen sensors II. Effect of the electrode preparation, J. Electrochem. Soc., 2000, vol. 147, p. 3548.
- 52. Rosini, S. and Siebert, E., Electrochemical sensors for detection of hydrogen in air: model of the non-Nernstian potentiometric response of platinum gas diffusion electrodes, Electrochim. Acta, 2005, vol. 50, p. 2943.
- 53. Maskell, W.C., Inorganic solid state chemically sensitive devices: electrochemical oxygen gas sensors, J. Phys. E., 1987, vol. 20, p. 1156.
- 54. Molochas, C. and Tsiakaras, P., Carbon monoxide tolerant pt-based electrocatalysts for H 2 -PEMFC applications: Current Progress and Challenges, Catalysts, 2021, vol. 11, p. 1127.
- 55. Ye, S., CO-tolerant catalysts. In PEM Fuel Cell Electrocatalysts and Catalyst Layers. Springer London, р. 759–834.