RAS Chemistry & Material ScienceЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

Processes at platinum electrodes during the cathode polarization in alcohol erbium nitrate solution

PII
10.31857/S0424857024050021-1
DOI
10.31857/S0424857024050021
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 5
Pages
341-348
Abstract
The processes at platinum electrodes during the cathode polarization in an alcohol solution of erbium nitrate are discussed. The current density maxima on the cathode branch of voltammograms were found to correspond to the potentials of the hydrogen reduction reactions. The gel-like deposit Er(OH)x(NO3)y2Н5О)z · nH2O, x + y + z = 3, formed during the cathode treatment was shown to be not a product of the electron exchange between the cathode and the solution components. The following formation mechanism of the erbium-containing deposit has been suggested. First, the electrochemical process of the hydrogen cathode reduction is implemented. This process leads to the ionic unbalance and causes the alkalinization of the cathode space. This creates conditions for the chemical process of the gel-like erbium hydroxide formation, which is physically adsorbed on the cathode surface as a precipitate.
Keywords
катодная поляризация платиновый электрод спиртовой раствор нитрата эрбия эрбийсодержащий осадок механизм формирования эрбийсодержащего осадка
Date of publication
01.05.2024
Year of publication
2024
Number of purchasers
0
Views
38

References

  1. 1. Reisfeld, R., Application of luminescence spectroscopy in new materials for solar energy utilization, Online Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2017. https://doi.org/10.1016/B978-0-12-409547-2.11688-9
  2. 2. Kenyon, A.J., Erbium in silicon, Semicond. Sci. Technol., 2005, vol. 20, p. R65.
  3. 3. Феклистов, К.В., Абрамкин, Д.С., Ободников, В.И., Попов, В. П. Легирование кремния эрбием методом имплантации атомов отдачи. Письма в ЖТФ. 2015. Т. 41. № 16. С. 52. [Feklistov, K.V., Abramkin, D.S., Obodnikov, V.I, and Popov, V.P., Doping silicon with erbium by recoil implantation, Techn. Phys. Lett., 2015, vol. 41 (8), p. 788.] https://doi.org/10.1134/S1063785015080209
  4. 4. Kukharchyk, N., Pal, S., Rödiger, J., Ludwig, A., Probst, S., Ustinov, A.V., Bushev, P., and Wieck, A.D., Photoluminescence of focused ion beam implanted Er3+: Y2SiO5 crystals, Phys. Status Solidi (RRL) – Rapid Res. Lett., 2014, vol. 8 (10), p. 880. https://doi.org/10.1002/pssr.201409304
  5. 5. Drozdov, M.N., Latukhina, N.V., Stepikhova, M.V., Pokoeva, V.A., and Surin, M.A., Oxygen and erbium distribution in diffusion doped silicon, Modern Electronic Mater., 2016, vol. 2, p. 7. https://doi.org/10.1016/j.moem.2016.08.001
  6. 6. Kimura, T., Yokoi, A., Horiguchi, H., and Saito, R., Electrochemical Er doping of porous silicon and its room-temperature luminescence, Appl. Phys. Lett., 1994, vol. 65, p. 983. https://doi.org/10.1063/1.112169
  7. 7. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions. Second English Edition. National Association of Corrosion Engineer, 1974, 645 p.
  8. 8. Методы измерения в электрохимии: в 2 т., под ред. Ю. А. Чизмаджева. М.: Мир, 1977. Т. 1. 588 с.
  9. 9. Фритц, Дж., Шенк, Г. Количественный анализ. Пер. с англ. Т. Н. Шеховцовой, О. А. Шпигуна; под ред. Ю. А. Золотова. М.: Мир, 1978. 557 с.
  10. 10. Bard, A.J. and Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; New York: Wiley, 2001, 850 p.
  11. 11. The Rare Earth Elements Fundamentals and Applications, Atwood D. A., Ed., John Wiley & Sons Ltd, West Sussex, UK, 2012, 629 p.
  12. 12. Handbook on the physics and chemistry of rare earths, vol.01, Gschneidner K. A., Jr. et al. Eds., Elsevier, 1978, 900 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library