- Код статьи
- 10.31857/S0424857024050019-1
- DOI
- 10.31857/S0424857024050019
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 60 / Номер выпуска 5
- Страницы
- 331-340
- Аннотация
- Исследовано изменение проводимости плоских бислойных липидных мембран из азолектина, вызванное плюрониками L61 и F68 с одинаковой длиной гидрофобных блоков поли(пропиленоксида) и разной длиной гидрофильных блоков поли(этиленоксида). Интегральная проводимость мембран увеличивается с ростом концентраций обоих плюроников. При одинаковой концентрации плюроников в растворе проводимость для L61 выше. По литературным данным [24] для L61 и F68 были рассчитаны концентрации плюроников, связанных с бислоем. При близких концентрациях связанных с мембраной плюроников проводимости мембран также близки. Был сделан вывод, что появление в мембране одинаковых гидрофобных частей плюроников L61 и F68 вызывает одинаковый рост проводимости в первом приближении. Форма кривых проводимости-концентрации является суперлинейной для L61 и сублинейной для F68. В присутствии обоих плюроников для приблизительно 40% мембран наблюдаются скачки проводимости с амплитудой от 10 до 300 пСм и выше. Мы связываем наблюдаемые скачки проводимости с возникновением в мембране проводящих пор или дефектов. Количество зарегистрированных в мембране пор было случайной величиной с большой дисперсией и не коррелировало с концентрацией плюроника. Разница между средними проводимостями пор для мембран с L61 и F68 не была статистически значимой.
- Ключевые слова
- бислойные липидные мембраны плюроник мембранная проводимость флуктуации мембранного тока липидная пора
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 1
Библиография
- 1. Fusco, S., Borzacchiello, A., and Netti, P.A., Perspectives on: PEO-PPO-PEO triblock copolymers and their biomedical applications, J. Bioact. Compat. Polym., 2006, vol. 21, p. 149. https://doi.org/10.1177/0883911506063207
- 2. Rey-Rico, A. and Cucchiarini, M., PEO-PPO-PEO tri-block copolymers for gene delivery applications in human regenerative medicine – an overview, Intern. J. Mol. Sci., 2018, vol. 19, p. 775. https://doi.org/10.3390/ijms19030775
- 3. Zarrintaj, P., Ramsey, J.D., Samadi, A., et al., Poloxamer: A versatile tri-block copolymer for biomedical applications, Acta Biomater., 2020, vol. 110, p. 37. https://doi.org/10.1016/j.actbio.2020.04.028
- 4. Frey, S.L. and Lee, K.Y.C., Temperature dependence of poloxamer insertion into and squeeze-out from lipid monolayers, Langmuir, 2007, vol. 23, p. 2631. https://doi.org/10.1021/la0626398
- 5. Yu, J., Qiu, H., Yin, S., Wang, H., and Li, Y., Polymeric Drug Delivery System Based on Pluronics for Cancer Treatment, Molecules, 2021, vol. 26, p. 3610. https://doi.org/10.3390/molecules26123610
- 6. Prado-Audelo, J.J., Magaña, B.A., et al., In vitro cell uptake evaluation of curcumin-loaded PCL/F68 nanoparticles for potential application in neuronal diseases, J. Drug Delivery Sci. and Technol., 2019, vol. 52, p. 905.
- 7. Venne, A., Li, S., Mandeville, R., Kabanov, A., and Alakhov, V., Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells, Cancer Res., 1996, vol. 56(16), p. 3626.
- 8. Huang, J., Si, L., Jiang, L., Fan, Z., Qiu, J., and Li, G., Effect of pluronic F68 block copolymer on P-glycoprotein transport and CYP3A4 metabolism, Intern. J. Pharm., 2008, vol. 356, p. 351.
- 9. Chang, L.C., Lin, C.Y., Kuo, M.W., et al., Interactions of Pluronics with phospholipid monolayers at the air–water interface, J. Colloid Interface Sci., 2005, vol. 285, p. 640. https://doi.org/10.1016/j.jcis.2004.11.011
- 10. Wu, G., Majewski, J, Ege, C., et al., Interaction between lipid monolayers and poloxamer 188: an X-ray reflectivity and diffraction study, Biophys. J., 2005, vol. 89, p. 3159. https://doi.org/10.1529/biophysj.104.052290
- 11. Maskarinec, S.A., Hannig, J., Lee, R.C., et al., Direct observation of poloxamer 188 insertion into lipid monolayers, Biophys. J., 2002, vol. 82, p. 1453. https://doi.org/10.1016/S0006-3495 (02)75499-4
- 12. Krylova, O.O., Melik-Nubarov, N.S., Badun, G.A., Ksenofontov, A.L., Menger, F.L., and Yaroslavov, A.A., Pluronic L61 accelerates flip-flop and transbilayer doxorubicin permeation, Chemistry, 2003, vol. 9 (16), p. 3930.
- 13. Zhirnov, A.E., Demina, T.V., Krylova, O.O., Grozdova, I.D., and Melik-Nubarov, N.S., Lipid composition determines interaction of liposome membranes with Pluronic L61, Biochim. Biophys. Acta, 2005, vol. 1720(1–2), p. 73.
- 14. Erukova, V.Y., Krylova, O.O., Antonenko, Y.N., and Melik-Nubarov, N.S., Effect of ethylene oxide and propylene oxide block copolymers on the permeability of bilayer lipid membranes to small solutes including doxorubicin, Biochim. Biophys. Acta, 2000, vol. 1468(1–2), p. 73.
- 15. Cheng, C.Y., Wang, J.Y., Kausik, R., et al., Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes:(II) role of hydration dynamics revealed by dynamic nuclear polarization, Biomacromolecules, 2012, vol. 13, p. 2624. https://doi.org/10.1021/bm300848c
- 16. Ileri Ercan, N., Stroeve, P., Tringe, J.W., et al., Understanding the interaction of pluronics L61 and L64 with a DOPC lipid bilayer: an atomistic molecular dynamics study, Langmuir, 2016, vol. 32, p. 10026. https://doi.org/10.1021/acs.langmuir.6b02360
- 17. Hezaveh, S., Samanta, S., De Nicola, A., et al., Understanding the interaction of block copolymers with DMPC lipid bilayer using coarse-grained molecular dynamics simulations, J. Phys. Chem. B, 2012, vol. 116, p.14333. https://doi.org/10.1021/jp306565e
- 18. Rabbel, H., Werner, M., and Sommer, J.U., Interactions of amphiphilic triblock copolymers with lipid membranes: modes of interaction and effect on permeability examined by generic Monte Carlo simulations, Macromolecules, 2015, vol. 48, p. 4724.
- 19. Zaki, A.M. and Carbone, P., How the incorporation of Pluronic block copolymers modulates the response of lipid membranes to mechanical stress, Langmuir, 2017, vol. 33, p. 13284. https://doi.org/10.1021/acs.langmuir.7b02244
- 20. Krylova, O.O. and Pohl, P., Ionophoric activity of pluronic block copolymers, Biochemistry, 2004, vol. 43, p. 3696. https://doi.org/10.1021/bi035768l
- 21. Anosov, A. A., Smirnova, E. Y., Korepanova, E. A., Kazamanov, V. A., and Derunets, A. S., Different effects of two Poloxamers (L61 and F68) on the conductance of bilayer lipid membranes, Europ. Phys. J. E, 2023, vol. 46(3), p. 14. https://doi.org/10.1140/epje/s10189-023-00270-1
- 22. Mueller, P., Rudin, D.O., Tien, H. T., and Wescott, W. C., Reconstitution of excitable cell membrane structure in vitro, Circulation, 1962, 26:1167.
- 23. Antonov, V.F., Smirnova, E.Y., Anosov, A.A., et al., PEG blocking of single pores arising on phase transitions in unmodified lipid bilayers, Biophysics, 2008, vol. 53 (5), p. 390. https://doi.org/10.1134/S0006350908050126
- 24. Grozdova, I.D., Badun, G.A., Chernysheva, M.G., et al., Increase in the length of poly (ethylene oxide) blocks in amphiphilic copolymers facilitates their cellular uptake, J. Appl. Polym. Sci., 2017, vol. 134, p. 45492. https://doi.org/10.1002/app.45492
- 25. Tristram-Nagle, S., Kim, D.J., Akhunzada, N., et al., Structure and water permeability of fully hydrated diphytanoylPC, Chem. Phys. Lipids, 2010, vol. 163, p. 630. https://doi.org/10.1016/j.chemphyslip.2010.04.011
- 26. Рытов, С. М. Введение в статистическую радиофизику. М.: Наука, 1976. С. 36–41. [Rytov, S.M., Introduction to Statistical Radiophysics (in Russian), Moscow: Science, 1976, p. 36–41.]
- 27. Abidor, I.G., Arakelyan, V.B., Chernomordik, L.V., et al., Electric breakdown of bilayer lipid membranes: I. The main experimental facts and their qualitative discussion, J. Electroanal. Chem. Interfacial Electrochem., 1979, vol. 104, p. 37. https://doi.org/10.1016/S0022-0728 (79)81006-2
- 28. Glaser, R.W., Leikin, S.L., Chernomordik, L.V., et al., Reversible electrical breakdown of lipid bilayers: formation and evolution of pores, Biochim. Biophys. Acta, Biomembr., 1988, vol. 940, p. 275. https://doi.org/10.1016/0005-2736 (88)90202-7
- 29. Weaver, J.C. and Chizmadzhev, Y.A., Theory of electroporation: a review, Bioelectrochem. Bioenerg., 1996, vol. 41, p. 135. https://doi.org/10.1016/S0302-4598 (96)05062-3
- 30. Böckmann, R.A., De Groot, B.L., Kakorin, S., et al., Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations, Biophys. J., 2008, vol. 95, p. 1837. https://doi.org/10.1529/biophysj.108.129437
- 31. Kirsch, S.A. and Böckmann, R.A., Membrane pore formation in atomistic and coarse-grained simulations, Biochim. Biophys. Acta, Biomembr., 2016, vol. 1858, p. 2266. https://doi.org/10.1016/j.bbamem.2015.12.031
- 32. Bennett, W.D., Sapay, N., and Tieleman, D.P., Atomistic simulations of pore formation and closure in lipid bilayers, Biophys. J., 2014, vol. 106, p. 210. https://doi.org/10.1016/j.bpj.2013.11.4486
- 33. Melikov, K.C., Frolov, V.A., Shcherbakov, A., et al., Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer, Biophys. J., 2001, vol. 80, p. 1829. https://doi.org/10.1016/S0006-3495 (01)76153-X
- 34. Dehez, F., Delemotte, L., Kramar, P., et al., Evidence of conducting hydrophobic nanopores across membranes in response to an electric field, J. Phys. Chem. C, 2014, vol. 118, p. 6752. https://doi.org/10.1021/jp4114865
- 35. Anosov, A.A., Smirnova, E.Y., Sharakshane, A.A., et al., Increase in the current variance in bilayer lipid membranes near phase transition as a result of the occurrence of hydrophobic defects, Biochim. Biophys. Acta, Biomembr., 2020, vol. 1862, p. 183147. https://doi.org/10.1016/j.bbamem.2019.183147
- 36. Akimov, S.A., Volynsky, P.E., Galimzyanov, T.R., et al., Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore, Sci. Rep., 2017, vol. 7, p. 1. https://doi.org/10.1038/s41598-017-12127-7
- 37. Hub, J.S. and Awasthi, N., Probing a continuous polar defect: A reaction coordinate for pore formation in lipid membranes, J. Chem. Theory Comput., 2017, vol. 13, p. 2352. https://doi.org/10.1021/acs.jctc.7b00106
- 38. Ting, C.L., Awasthi, N., Müller, M., et al., Metastable prepores in tension-free lipid bilayers, Phys. Rev. Lett., 2018, vol. 120, p. 128103. https://doi.org/10.1103/PhysRevLett.120.128103
- 39. Bubnis, G. and Grubmüller, H., Sequential water and headgroup merger: Membrane poration paths and energetics from MD simulations, Biophys. J., 2022, vol. 119, p. 2418. https://doi.org/10.1016/j.bpj.2020.10.037