- Код статьи
- 10.31857/S0424857023110087-1
- DOI
- 10.31857/S0424857023110087
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 59 / Номер выпуска 11
- Страницы
- 707-715
- Аннотация
- Проведено исследование морфологии, структуры и элементного состава гибридных материалов на поверхности нержавеющей стали на основе полиэлектролитных комплексов хитозана с оксидами кобальта и никеля, полученных с помощью переменного асимметричного тока. Методом рентгенофазового анализа установлено, что основной фазой полученных гибридных материалов является гидроксиизоцианат кобальта. Показана перспективность использования полученных гибридных материалов в качестве электродных для суперконденсаторов с щелочным электролитом, при этом его удельная емкость при плотности тока 1 А г–1 достигает 479 Ф г–1. Определена антибактериальная активность гибридных материалов в отношении грамположительных (S. aureus) и грамотрицательных (E. coli) микроорганизмов. Проведено исследование коррозионно-защитных свойств разработанных гибридных материалов в растворе 3.5 мас. % NaCl, показано, что для гибридного материала потенциал коррозии сдвинут в область положительных значений по сравнению с чистой сталью.
- Ключевые слова
- нестационарный электролиз гибридные электродные материалы антибактериальная активность защита от коррозии
- Дата публикации
- 01.11.2023
- Год выхода
- 2023
- Всего подписок
- 0
- Всего просмотров
- 22
Библиография
- 1. Kickelbick, G. and Schubert, U., Inorganic clusters in organic polymers and the use of polyfunctional inorganic compounds as polymerization initiators, Monatshefte für Chemie/Chemical Monthly, 2001, vol. 132, p. 13.
- 2. Choudhary, N., Islam, M.A., Kim, J.H., Ko, T.J., Schropp, A., Hurtado, L., Weitzman, D., Zhai, L., and Jung, Y., Two-dimensional transition metal dichalcogenide hybrid materials for energy applications, Nano Today, 2018, vol. 19, p. 16.
- 3. Shinde, V., Uthayakumar, M., and Karthick, R., Self-assembled cobalt hydroxide micro flowers from nanopetals: Structural, fractal analysis and molecular docking study, Surfaces and Interfaces, 2022, vol. 32, p. 102163.
- 4. Yao, S., Jiao, Y., Lv, C., Kong, Y., Ramakrishna, S., and Chen, G., Lattice-strain engineering of CoOOH induced by NiMn-MOF for high-efficiency supercapacitor and water oxidation electrocatalysis, J. Colloid and Interface Sci., 2022, vol. 623, p. 1111.
- 5. Pandey, U., Singh, A.K., and Sharma, C., Development of anti-corrosive novel nickel-graphene oxide-polypyrrole composite coatings on mild steel employing electrodeposition technique, Synthetic Metal, 2022, vol. 290. p. 117135.
- 6. Vijeth, H., Ashokkumar, S.P., Yesappa, L., Vandana, M., and Devendrappa, H., Hybrid core-shell nanostructure made of chitosan incorporated polypyrrole nanotubes decorated with NiO for all-solid-state symmetric supercapacitor application, Electrochim. Acta, 2020, vol. 354, p. 136651.
- 7. Aguilera, L., Leyet, Y., Almeida, A., Moreira, J.A., de la Cruz, J.P., Milán-Garcés, E.A., and Pocrifka, L.A., Electrochemical preparation of Ni(OH)2/CoOOH bilayer films for application in energy storage devices, J. Alloys and Compounds, 2021, vol. 874, p. 159858.
- 8. Abd El-Hack, M.E., El-Saadony, M.T., Shafi, M.E., Zabermawi, N.M., Arif, M., Batiha, G.E., Khafaga, A.F., Abd El-Hakim, Y.M., and Al-Sagheer, A.A., Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review, Intern. J. Biol. Macromol., 2020, vol. 164, p. 2726.
- 9. Roy, B.K., Tahmid, I., and Rashid, T.U., Chitosan-based materials for supercapacitor application-a review, J. Mater. Chem. A, 2021, vol. 9, p. 17592.
- 10. Adewuyi, S., Kareem, K.T., Atayese, A.O., Amolegbe, S.A., and Akinremi, C.A., Chitosan–cobalt(II) and nickel(II) chelates as antibacterial agents, Intern. J. Biol. Macromol., 2011, vol. 48, p. 301.
- 11. Yang, S.F., Wen, Y., Yi, P., Xiao, K., and Dong, C.F., Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel, Intern. J. Minerals, Metallurgy, and Materials, 2017, vol. 24, p. 1260.
- 12. Catauro, M., Tranquillo, E., Barrino, F., Blanco, I., Dal Poggetto, F., and Naviglio, D., Drug release of hybrid materials containing Fe(II) citrate synthesized by sol-gel technique, Materials, 2018, vol. 11, p. 2270.
- 13. Ebisike, K., Okoronkwo, A.E., and Alaneme, K.K., Synthesis and characterization of Chitosan–silica hybrid aerogel using sol-gel method, J. King Saud Univer.-Sci., 2020, vol. 32, p. 550.
- 14. Lei, Q., Guo, J., Noureddine, A., Wang, A., Wuttke, S., Brinker, C.J., and Zhu, W., Sol–gel-based advanced porous silica materials for biomedical applications, Adv. Functional Mater., 2020, vol. 30, p. 1909539.
- 15. Mbugua, N.S., Kang, M., Zhang, Y., Ndiithi, N.J., Bertrand, G.V., and Yao, L., Electrochemical deposition of Ni, NiCo alloy and NiCo–ceramic composite coatings—A critical review, Materials, 2020, vol. 13, p. 3475.
- 16. Gyftou, P., Pavlatou, E., and Spyrellis, N., Effect of pulse electrodeposition parameters on the properties of Ni/nano-SiC composites, Appl. Surface Sci., 2008, vol. 254, p. 5910.
- 17. Khramenkova, A.V., Moshchenko, V.V., Yakovenko, A.A., Pushnitsa, K.A., Pavlovskii, A.A., and Maximov, M.Y., Synthesis, structure investigation and future prospects of transition metal oxides/carbon cloth hybrids as flexible binder-free anode materials for lithium-ion batteries, Mater. Lett., 2022, vol. 329, p. 133250.
- 18. Khramenkova, A.V., Ariskina, D.N., Polozhentsev, O.E., Lyatun, I.I., Kuznetsov, D.M., and Yatsenko, E.A., Hybrid polymer-oxide materials formed by non-stationary electrolysis as catalysts for hydrogen peroxide decomposition, Composite Interfaces, 2022, vol. 29, p. 1229.
- 19. Khramenkova, A.V., Ariskina, D.N., Moshchenko, V.V., and Polozhentsev, O.E., Study of the structure of hybrid coatings on the surface of stainless steel obtained using an alternating asymmetric current, J. Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2022, vol. 16, p. 682.
- 20. Храменкова, А.В., Изварина, Д.Н., Шершакова, А.А., Кириленко, М.А., Кузнецов, О.Ю. Электрохимическое получение гибридных покрытий на основе оксидов кобальта, никеля и хитозана и исследование их функциональных свойств. Гальванотехника и обработка поверхности. 2022. № 30 (3). С. 57. [Khramenkova, A.V., Izvarina, D.N., Shershakova, A.A., Kirilenko, M.A., and Kuznetsov, O.Yu., Electrochemical preparation of hybrid coatings based on cobalt nickel oxides and chitosan and investigation of their functional properties, Galvanotekhnika i Obrabotka Poverkhnosti (in Russian), 2022, no. 30 (3), р. 57.
- 21. Ignatova, K. and Lilova, D., A study on the kinetics of the electrodeposition of Ni, Co and Ni–Co alloy in citrate electrolyte. Part 1: the kinetic study of the independent electrodeposition of Ni and Co, J. Chem. Technology and Metallurgy, 2015, vol. 50, p. 199.
- 22. Schweckandt, D.S. and del Carmen Aguirre, M., Electrodeposition of Ni-Co alloys. Determination of properties to be used as coins, Procedia Mater. Sci., 2015, vol. 8, p. 91.
- 23. Tiwari, N., Kadam, S., Ingole, R., and Kulkarni, S., Facile hydrothermal synthesis of ZnFe2O4 nanostructures for high-performance supercapacitor application, Ceram. Intern., 2022, vol. 48, p. 29478.
- 24. Ghosh, D., Giri, S., and Das, C.K., Preparation of CTAB-assisted hexagonal platelet Co (OH)2/graphene hybrid composite as efficient supercapacitor electrode material, ACS Sustainable Chemistry & Engineering, 2013, vol. 1, p. 1135.
- 25. Ji, W., Ji, J., Cui, X., Chen, J., Liu, D., Deng, H., and Fu, Q., Polypyrrole encapsulation on flower-like porous NiO for advanced high-performance supercapacitors, Chem. Commun., 2015, vol. 51, p. 7669.
- 26. Khalaj, M., Golkhatmi, S.Z., and Sedghi, A., High-performance supercapacitor electrode materials based on chemical co-precipitation synthesis of nickel oxide (NiO)/cobalt oxide (Co3O4)-intercalated graphene nanosheets binary nanocomposites, Diamond and Related Materials, 2021, vol. 114, p. 108313.
- 27. Hussain, N., Yang, W., Dou, J., Chen, Y., Qian, Y., and Xu, L., Ultrathin mesoporous F-doped α-Ni(OH)2 nanosheets as an efficient electrode material for water splitting and supercapacitors, J. Mater. Chem. A, 2019, vol. 7, p. 9656.
- 28. Zheng, L.Y. and Zhu, J.F., Study on antimicrobial activity of chitosan with different molecular weights, Carbohydrate polymers, 2003, vol. 54, p. 527.
- 29. Fred, B. and Pearson Ralph, G. Mechanisms of inorganic reactions. N.Y.: Wiley, 1967.
- 30. John, S., Joseph, A., Jose, A.J., and Narayana, B., Enhancement of corrosion protection of mild steel by chitosan/ZnO nanoparticle composite membranes, Progress in Organic Coatings, 2015, vol. 84, p. 28.
- 31. Беспалова, Ж.И., Храменкова, А.В. Исследование возможности получения каталитически активных оксидных соединений на твердом носителе методом нестационарного электролиза. Журн. прикл. химии. 2013. Т. 86. С. 578. [Bespalova, Zh.I. and Khramenkova, A.V., A study of the possibility of obtaining catalytically active oxide compounds on a solid support by transient electrolysis, Russ. J. Appl. Chem., 2013, vol. 86, р. 539.]