ОХНМЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

Особенности электронной структуры кислороддефицитных перовскитов SrFe1 – xMoxO3 – y

Код статьи
10.31857/S0424857023040060-1
DOI
10.31857/S0424857023040060
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 59 / Номер выпуска 4
Страницы
187-192
Аннотация
С помощью пакета VASP в рамках подхода DFT проведены расчеты свойств основного состояния оксида со структурой перовскита SrFe1 – xMoxO3 – y для различных значений содержания молибдена и кислородной нестехиометрии. Показано, что допирование, как и изменение содержания кислорода, приводит к изменению зарядового состояния ионов кислорода в системе, при этом уровень Ферми смещается относительно неизменной структуры зон (rigid band model), и происходит переход к полуметаллическому типу проводимости.
Ключевые слова
перовскиты квантовая химия допирование электронная структура уровень ферми полуметалл
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
3

Библиография

  1. 1. Волошин, Б.В., Кошевой, Е.И., Улихин, А.С., Попов, М.П., Немудрый, А.П. Модификация катодного материала La0.6Sr0.4Co0.2Fe0.8O3 – δ сегнетоактивным катионом молибдена. Электрохимия. 2022. Т. 58. С. 116. [Voloshin, B.V., Koshevoi, E.I., Ulihin, A.S., Popov, M.P., and Nemudry, A.P., Modifying the La0.6Sr0.4Co0.2Fe0.8O3 – δ Cathodic Material by Ferroactive Molybdenum Cation, Russ. J. Electrochem., 2022, vol. 58, p. 163.] https://doi.org/10.1134/S1023193522020112
  2. 2. Bragina, O.A. and Nemudry, A.P., Influence of Mo-doping on structure and oxygen permeation properties of SrCo0.8 – xFe0.2MoxO3 – δ perovskite membranes for oxygen separation, J. Membrane Sci., 2017, vol. 539, p. 313. https://doi.org/10.1016/j.memsci.2017.06.018
  3. 3. Kresse, G. and Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, p. 11169.
  4. 4. Das, T., Nicholas, J.D., and Qi, Y., Long-range charge transfer and oxygen vacancy interactions in strontium ferrite, J. Mater. Chem. A, 2017, vol. 5, p. 4493. https://doi.org/10.1039/c6ta10357j
  5. 5. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, vol. 77, p. 3865.
  6. 6. Tang, W., Sanville, E., and Henkelman, G., A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Compute Mater., 2009, vol. 21, p. 084204.
  7. 7. Kotomin, E.A., Mastrikov, Yu.A., Kuklja, M.M., Merkle, R., Roytburd, A., and Maier, J., First principles calculations of oxygen vacancy formation and migration in mixed conducting Ba0.5Sr0.5Co1 – yFeyO3 – δ perovskites, Solid State Ionics, 2011, vol. 188, p. 1.
  8. 8. Wang, T.-H. and Searle, T.M., A rigid band model for recombination in a-Si alloys, J. Non-Crystalline Solids, 1996, vol. 198, p. 280.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека