RAS Chemistry & Material ScienceЭлектрохимия Russian Journal of Electrochemistry

  • ISSN (Print) 0424-8570
  • ISSN (Online) 3034-6185

Specific Features of the Electronic Structure of Oxygen-Deficient Perovskites SrFe1 – xMoxO3 – y

PII
10.31857/S0424857023040060-1
DOI
10.31857/S0424857023040060
Publication type
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 4
Pages
187-192
Abstract
By using the VASP package, within the framework of the DFT approach, the properties of the ground state of the SrFe1 – xMoxO3 – y oxide with the perovskite structure are calculated for the various values of molybdenum content and oxygen nonstoichiometry. It is shown that the doping procedure as well as the procedure of varying the oxygen content give rise to changes in the charge stage of oxygen ions in the system, which is accompanied by a shift of the Fermi level with respect to the invariant band structure (rigid band model) and the transition to the semimetal conduction type.
Keywords
перовскиты квантовая химия допирование электронная структура уровень ферми полуметалл
Date of publication
01.04.2023
Year of publication
2023
Number of purchasers
0
Views
31

References

  1. 1. Волошин, Б.В., Кошевой, Е.И., Улихин, А.С., Попов, М.П., Немудрый, А.П. Модификация катодного материала La0.6Sr0.4Co0.2Fe0.8O3 – δ сегнетоактивным катионом молибдена. Электрохимия. 2022. Т. 58. С. 116. [Voloshin, B.V., Koshevoi, E.I., Ulihin, A.S., Popov, M.P., and Nemudry, A.P., Modifying the La0.6Sr0.4Co0.2Fe0.8O3 – δ Cathodic Material by Ferroactive Molybdenum Cation, Russ. J. Electrochem., 2022, vol. 58, p. 163.] https://doi.org/10.1134/S1023193522020112
  2. 2. Bragina, O.A. and Nemudry, A.P., Influence of Mo-doping on structure and oxygen permeation properties of SrCo0.8 – xFe0.2MoxO3 – δ perovskite membranes for oxygen separation, J. Membrane Sci., 2017, vol. 539, p. 313. https://doi.org/10.1016/j.memsci.2017.06.018
  3. 3. Kresse, G. and Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, p. 11169.
  4. 4. Das, T., Nicholas, J.D., and Qi, Y., Long-range charge transfer and oxygen vacancy interactions in strontium ferrite, J. Mater. Chem. A, 2017, vol. 5, p. 4493. https://doi.org/10.1039/c6ta10357j
  5. 5. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, vol. 77, p. 3865.
  6. 6. Tang, W., Sanville, E., and Henkelman, G., A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Compute Mater., 2009, vol. 21, p. 084204.
  7. 7. Kotomin, E.A., Mastrikov, Yu.A., Kuklja, M.M., Merkle, R., Roytburd, A., and Maier, J., First principles calculations of oxygen vacancy formation and migration in mixed conducting Ba0.5Sr0.5Co1 – yFeyO3 – δ perovskites, Solid State Ionics, 2011, vol. 188, p. 1.
  8. 8. Wang, T.-H. and Searle, T.M., A rigid band model for recombination in a-Si alloys, J. Non-Crystalline Solids, 1996, vol. 198, p. 280.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library