- Код статьи
- 10.31857/S0424857023020044-1
- DOI
- 10.31857/S0424857023020044
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 59 / Номер выпуска 2
- Страницы
- 92-100
- Аннотация
- В работе проведена сравнительная оценка эффективности микроорганизмов Shewanella xiamenensis и Escherichia coli, используемых в качестве биокатализатора в процессе биоэлектрохимического окисления различных субстратов в нейтральных средах на безмедиаторном и медиаторном биоанодах. Показано, что скорость биоэлектрохимического окисления исследуемых органических субстратов (лимонная кислота, глюкоза, сахароза) с помощью клеток S. xiamenensis не зависит от концентрации введенного в систему медиатора (метиленового синего) – перенос электронов от клеток на электрод осуществляется в результате прямого контакта клеток с поверхностью электрода. Сравнительный кинетический анализ показал, что клетки S. xiamenensis являются менее эффективным биологическим катализатором процесса окисления глюкозы по сравнению с микроорганизмом E. coli (в присутствии медиатора). Определены кинетические характеристики реакции окисления глюкозы в системе “медиатор–субстрат–клетки E. coli”. Установлено, что порядок реакции окисления по глюкозе на аноде равен единице, величина константы скорости этой реакции составляет 0.0214 мин–1, время полупревращения глюкозы – 33 мин. Показано, что исследуемая модельная система позволяет понизить концентрацию глюкозы в рабочем растворе до значения фонового тока, что свидетельствует о почти полной очистке раствора от органического субстрата. Показано, что при решении практических задач для повышения эффективности очистки стоков от органических веществ с помощью безмедиаторных биоанодов необходимо вести поиск новых клеток, в том числе и других клеток рода Shewanella, с обязательной иммобилизацией клеток на поверхности электрода с целью повышения электрического контакта.
- Ключевые слова
- медиаторный и безмедиаторный биоэлектрокатализ окисление органических субстратов редокс-медиатор <i>Escherichia coli</i> <i>Shewanella xiamenensis</i> микробные топливные элементы
- Дата публикации
- 01.02.2023
- Год выхода
- 2023
- Всего подписок
- 0
- Всего просмотров
- 49
Библиография
- 1. Logan, E. and Rabaey, K., Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies, Science, 2012, vol. 337, p. 686.
- 2. Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A., and Domiguez-Espinosa, R. Production of bioenergy and biochemicals from industrial and agricultural wastewater, TRENDS in Biotechnology, 2004, vol. 22, no. 9, p. 478.
- 3. Казаринов, И.А. Введение в биологическую электрохимию. Саратов: Изд-во Сарат. ун-та, 2012. 216 с. [Kazarinov, I.A., Introduction to biological electrochemistry (in Russian), Saratov: Izd-vo Sarat. un-ta, 2011. 216 p.]
- 4. Katz, E., Shipway, A.N., and Willner, I., Handbook of fuel cells – Fundamentals, Technology and Application, Vielstich, W., Gasteiger, H.A., and Lamm, A., Eds, London: John Wiley&Sons. Ltd., 2003, vol. 1, p. 2–27.
- 5. Shukla, A.K., Suresh, P., Berchmans, S., and Rajendran, A., Biological fuel cells and their applications, Current Science, 2004, vol. 87, no. 4, p. 455.
- 6. Davila, D., Esquivel, J., and Vigues, N., Development and Optimization of Microbial Fuel Cells, J. New Mater. Electroch. Systems, 2008, vol. 11, p. 99.
- 7. Bulter, J.I., A diheme c-type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens, J. Bacteriol, 2004, vol. 186, p. 4042.
- 8. Methe, B.A., Genome of Geobacter sulfurreducens: metal reduction in subsurface environments, Science, 2003, vol. 302, p. 1967.
- 9. Rabaey, K., Microbial ecology meets electrochemistry: electricity driven and driving communities, ISME J., 2007, vol. 1, p. 9.
- 10. Lovley, D.R., Microbial energizers: fuel cells that keep on going, Microbe, 2006, vol. 1, p. 323.
- 11. Myers, C.R., Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1, J. Bacteriol, 1992, vol. 194, p. 3429.
- 12. Myers, C.R., Role of outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide, Appl. Environ. Biotechnol., 2001, vol. 67, p. 260.
- 13. Kim, H.J., A mediator-less microbial fuel cell using a metal reducing bacterium Shewanella putrefaciens, Enzyme Microb. Technol., 2002, vol. 30, p. 145.
- 14. Kim, B.H., Direct electrode reaction of Fe(III)-reducing bacterium Shewanella putrefaciens, J. Microbiol. Biotechnol., 1999, vol. 9, p. 127.
- 15. Градсков, Д.А., Игнатов, В.В., Казаринов, И.А. Биоэлектрохимическое окисление глюкозы с помощью бактерии Escherichia coli. Электрохимия. 2001. Т. 37. С.1397. [Gradskov, D.A., Ignatov, V.V., and Kazarinov, I.A., Bioelectrochemical oxidation of glucose using the bacterium Escherichia coli, Russ. J. Electrochem., 2001, vol. 37, p. 1216.]
- 16. Кузьмичева, Е.В., Степанов, А.Н., Казаринов, И.А., Игнатов, О.В. Изучение кинетики окисления глюкозы бактериальными клетками Escherichia coli с помощью метода вращающегося дискового электрода. Электрохим. энергетика. 2007. Т. 7. С. 200. [Kuzmicheva, E.V., Stepanov, A.N., Kazarinov, I.A., and Ignatov, O.V., Study of the kinetics of glucose oxidation by Escherichia coli bacterial cells using the rotating disk electrode method, Elektrokhimicheskaya energetika (in Russian), 2007, vol. 7, p. 200.]
- 17. Казаринов, И.А., Кузьмичева, Е.В., Игнатова, А.А. Оценка эффективности работы экзогенных редокс медиаторов в биоэлектрохимической системе глюкоза-клетки Esherichia coli-медиатор. Электрохим. энергетика. 2011. Т. 11. С. 60. [Kazarinov, I.A., Kuzmicheva, E.V., and Ignatova, A.A., Evaluation of the efficiency of exogenous redox mediators in the bioelectrochemical system glucose-cells Escherichia coli-mediator, Elektrokhimicheskaya energetika (in Russian), 2011, vol. 11, p. 60.]
- 18. Казаринов, И.А., Игнатова, А.А., Наумова, М.Н. Кинетика электрокаталитического окисления глюкозы клетками бактерий Escherichia coli в присутствии экзогенных медиаторов. Электрохимия. 2014. Т. 50. С. 97. [Kazarinov, I.A., Ignatova, A.A., and Naumova, M.N., Kinetics of the electrocatalytic oxidation of glucose by Escherichia coli bacterial cells in the presence of exogenous mediators, Russ. J. Electrochem., 2014, vol. 50, p. 87.]